Pregnancy increases excitability of mechanosensitive afferents innervating the uterine cervix

Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1009, USA.
Anesthesiology (Impact Factor: 6.17). 06/2008; 108(6):1087-92. DOI: 10.1097/ALN.0b013e31817302e0
Source: PubMed

ABSTRACT Labor pain derives primarily from stimulation of afferents innervating the uterine cervix and lower uterine segment. The authors have previously shown that the excitability of these afferents is regulated by sex hormones and test in this study whether pregnancy also alters their excitability.
After animal care committee approval, Sprague-Dawley rats (nonpregnant, pregnant days 17 and 21) were anesthetized, and two metal rods were placed through the cervix for distension. The right hypogastric nerve was dissected and carefully teased until recording from a single unit was obtained. Spontaneous activity and the response to a graded distension (20-80 g) were recorded for off-line analysis.
A total of 151 fiber units were recorded. Pregnancy was associated with an increase in spontaneous nerve activity in the absence of a mechanical stimulus (median of 0.98 and 1.56 Hz from pregnant days 17 and 21, respectively, compared with 0.45 Hz in nonpregnant; P < 0.01). The proportion of fibers responding to the weakest stimulus (20 g) was significantly greater in pregnant than in nonpregnant animals. The response to graded distension differed significantly among groups, with day 21 > day 17 > nonpregnant.
Afferents that innervate the uterine cervix sprout into this tissue during late pregnancy, and estrogen increases excitability of these mechanosensitive afferents. Here, the authors show that excitability also increases during pregnancy. These data suggest that, close to the onset of labor, there is an increased input to the spinal cord from cervical distension and an increased depolarization of afferent terminals in the cervix, effects that could influence pain and the progress of labor.

  • [Show abstract] [Hide abstract]
    ABSTRACT: To study whether pregnancy week at delivery is an independent risk factor for shoulder dystocia. Population study. Medical Birth Registry of Norway. All vaginal deliveries of singleton offspring in cephalic presentation in Norway during 1967 through 2009 (n = 2 014 956). The incidence of shoulder dystocia was calculated according to pregnancy week at delivery. The associations of pregnancy week at delivery with shoulder dystocia were estimated as crude and adjusted odds ratios using logistic regression analyses. We repeated the analyses in pregnancies with and without maternal diabetes. Shoulder dystocia at delivery. The overall incidence of shoulder dystocia was 0.73% (n = 14 820), and the incidence increased by increasing pregnancy week at delivery. Birthweight was strongly associated with shoulder dystocia. After adjustment for birthweight, induction of labour, use of epidural analgesia at delivery, prolonged labour, forceps-assisted and vacuum-assisted delivery, parity, period of delivery and maternal age in multivariable analyses, the adjusted odds ratios for shoulder dystocia were 1.77 (1.42-2.20) for deliveries at 32-35 weeks of gestation, and 0.84 (0.79-0.88) at 42-43 weeks of gestation, using weeks 40-41 as the reference. In pregnancies affected by diabetes (n = 11 188), the incidence of shoulder dystocia was 3.95%, and after adjustment for birthweight the adjusted odds ratio for shoulder dystocia was 2.92 (95% CI 1.54-5.52) for deliveries at weeks 32-35 of gestation, and 0.91 (95% CI 0.50-1.66) at 42-43 weeks of gestation. The risk of shoulder dystocia was associated with increased birthweight, diabetes, induction of labour, use of epidural analgesia at delivery, prolonged labour, forceps-assisted and vacuum-assisted delivery, parity and period of delivery but not with post-term delivery.
    BJOG An International Journal of Obstetrics & Gynaecology 09/2013; 121(1). DOI:10.1111/1471-0528.12427 · 3.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Women disproportionately suffer from many deep tissue pain conditions. Experimental studies show that women have lower pain thresholds, higher pain ratings and less tolerance to a range of painful stimuli. Most clinical and epidemiological reports suggest female gonadal hormones modulate pain for some, but not all, conditions. Similarly, animal studies support greater nociceptive sensitivity in females in many deep tissue pain models. Gonadal hormones modulate responses in primary afferents, dorsal horn neurons and supraspinal sites, but the direction of modulation is variable. This review will examine sex differences in deep tissue pain in humans and animals focusing on the role of gonadal hormones (mainly estradiol) as an underlying component of the modulation of pain sensitivity.
    Frontiers in Neuroendocrinology 07/2013; DOI:10.1016/j.yfrne.2013.07.002 · 7.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Variability in labor pain has been associated with demographic, clinical, and psychological factors. Polymorphisms of the β2-adrenergic receptor gene (ADRB2) influence sensitivity to experimental pain in humans and are a risk factor for chronic pain. The authors hypothesized that polymorphisms in ADRB2 may influence labor pain. After Institutional Review Board approval and written informed consent, the authors prospectively obtained hourly pain reports from 233 nulliparous parturients during the first stage of labor, of which 199 were included in the current analysis. DNA from blood samples was genotyped at polymorphisms in the genes for the β2-adrenergic receptor, the μ opioid receptor subtype 1, catechol-O-methyltransferase, fatty acid amide hydrolase, and the oxytocin receptor. Labor pain as a function of cervical dilation was modeled with previously described methods. Patient covariates, ADRB2 genotype, and obstetrical and anesthesia treatment were evaluated as covariates in the model. Labor pain more rapidly became severe in parturients heterozygous or homozygous for the G allele at rs1042714 in the ADRB2 gene. Labor pain increased more rapidly after artificial rupture of membranes, augmentation with oxytocin, and in younger women. Inclusion of covariates explained approximately 10% of the variability between subjects. ADRB2 genotype explained less than 1% of the intersubject variability. ADRB2 genotype correlates with labor pain but explained less than 1% of the intersubject variance in the model.
    Anesthesiology 07/2014; DOI:10.1097/ALN.0000000000000258 · 6.17 Impact Factor