Bcl-2 family members: dual regulators of apoptosis and autophagy.

Howard Hughes Medical Institute, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9113, USA.
Autophagy (Impact Factor: 11.42). 07/2008; 4(5):600-6. DOI: 10.4161/auto.6260
Source: PubMed

ABSTRACT The essential autophagy protein and haplo-insufficient tumor suppressor, Beclin 1, interacts with several cofactors (Ambra1, Bif-1, UVRAG) to activate the lipid kinase Vps34, thereby inducing autophagy. In normal conditions, Beclin 1 is bound to and inhibited by Bcl-2 or the Bcl-2 homolog Bcl-X(L). This interaction involves a Bcl-2 homology 3 (BH3) domain in Beclin 1 and the BH3 binding groove of Bcl-2/Bcl-X(L). Other proteins containing BH3 domains, called BH3-only proteins, can competitively disrupt the interaction between Beclin 1 and Bcl-2/Bcl-X(L) to induce autophagy. Nutrient starvation, which is a potent physiologic inducer of autophagy, can stimulate the dissociation of Beclin 1 from its inhibitors, either by activating BH3-only proteins (such as Bad) or by posttranslational modifications of Bcl-2 (such as phosphorylation) that may reduce its affinity for Beclin 1 and BH3-only proteins. Thus, anti-apoptotic Bcl-2 family members and pro-apoptotic BH3-only proteins may participate in the inhibition and induction of autophagy, respectively. This hitherto neglected crosstalk between the core machineries regulating autophagy and apoptosis may redefine the role of Bcl-2 family proteins in oncogenesis and tumor progression.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Curcumin is a natural anti-cancer agent derived from turmeric (Curcuma longa). Curcumin triggers intrinsic apoptotic cell death by activating mitochondrial permeabilization due to the altered expression of pro- and anti-apoptotic Bcl-2 family members. Phosphoinositol-3-kinase (PI3K) and Akt, key molecular players in the survival mechanism, have been shown to be associated with the Bcl-2 signaling cascade; therefore, evaluating the therapeutic efficiency of drugs that target both survival and the apoptosis mechanism has gained importance in cancer therapy. We found that Bcl-2 overexpression is a limiting factor for curcumin-induced apoptosis in highly metastatic MCF-7 breast cancer cells. Forced overexpression of Bcl-2 also blocked curcumin-induced autophagy in MCF-7 cells, through its inhibitory interactions with Beclin-1. Pre-treatment of PI3K inhibitor LY294002 enhanced curcumin-induced cell death, apoptosis, and autophagy via modulating the expression of Bcl-2 family members and autophagosome formation in MCF-7 breast cancer cells. Atg7 silencing further increased apoptotic potential of curcumin in the presence or absence of LY294002 in wt and Bcl-2+ MCF-7 cells. The findings of this study support the hypothesis that blocking the PI3K/Akt pathway may further increased curcumin-induced apoptosis and overcome forced Bcl-2 expression level mediated autophagic responses against curcumin treatment in MCF-7 cells.
    Biomedecine [?] Pharmacotherapy 03/2015; 71:161-171. DOI:10.1016/j.biopha.2015.02.029 · 2.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alisertib (ALS) is an investigational potent Aurora A kinase inhibitor currently undergoing clinical trials for the treatment of hematological and non-hematological malignancies. However, its antitumor activity has not been tested in human breast cancer. This study aimed to investigate the effect of ALS on the growth, apoptosis, and autophagy, and the underlying mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. In the current study, we identified that ALS had potent growth-inhibitory, pro-apoptotic, and pro-autophagic effects in MCF7 and MDA-MB-231 cells. ALS arrested the cells in G2/M phase in MCF7 and MDA-MB-231 cells which was accompanied by the downregulation of cyclin-dependent kinase (CDK)1/cell division cycle (CDC) 2, CDK2, and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53, suggesting that ALS induces G2/M arrest through modulation of p53/p21/CDC2/cyclin B1 pathways. ALS induced mitochondria-mediated apoptosis in MCF7 and MDA-MB-231 cells; ALS significantly decreased the expression of B-cell lymphoma 2 (Bcl-2), but increased the expression of B-cell lymphoma 2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and increased the expression of cleaved caspases 3 and 9. ALS significantly increased the expression level of membrane-bound microtubule-associated protein 1 light chain 3 (LC3)-II and beclin 1 and induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (MAPK) pathways in MCF7 and MDA-MB-231 cells as indicated by their altered phosphorylation, contributing to the pro-autophagic activities of ALS. Furthermore, treatment with wortmannin markedly downregulated ALS-induced p38 MAPK activation and LC3 conversion. In addition, knockdown of the p38 MAPK gene by ribonucleic acid interference upregulated Akt activation and resulted in LC3-II accumulation. These findings indicate that ALS promotes cellular apoptosis and autophagy in breast cancer cells via modulation of p38 MAPK/Akt/mTOR pathways. Further studies are warranted to further explore the molecular targets of ALS in the treatment of breast cancer.
    Drug Design, Development and Therapy 01/2015; 9:1627-52. DOI:10.2147/DDDT.S75378 · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ZNF32 is a recently identified zinc finger protein and its functions remain largely unknown. Autophagy has been shown to affect cell proliferation and survival. Here, we innovatively show the effect of ZNF32 on cell autophagy and autophagy-associated cell death in breast carcinoma cells and also elucidate its underlying mechanisms. We examined the autophagic activity and LC3 II expression in human carcinoma cell lines with increased or decreased ZNF32 expression. Pharmacological inhibition (rapamycin) or activation (EGF) assays were used to investigate the function of the AKT/mTOR pathway during this process. H2O2- and diamide-induced MCF-7 cell death models were used to elucidate the role of ZNF32-associated autophagy in breast carcinoma cell death. Our results show that increasing ZNF32 expression in MCF-7 cells inhibits autophagy initiation by activating the AKT/mTOR pathway, and further reduced autophagy-associated cell death and maintained MCF-7 cell survival. Conversely, impairing ZNF32 expression by transfecting ZNF32 siRNA strongly promoted autophagy, further augmenting autophagy-associated cell death. Furthermore, correlations between ZNF32 and autophagy were observed in both MCF-7 xenograft tumors and in breast cancer patients. In conclusion, ZNF32 acts as an effective autophagy inhibitor to protect breast cancer cells from excessive stimulus-autophagy-induced cell death.
    Scientific Reports 03/2015; 5:9288. DOI:10.1038/srep09288 · 5.08 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014