Article

Sendai virus recombinant vaccine expressing hPIV-3 HN or F elicits protective immunity and combines with a second recombinant to prevent hPIV-1, hPIV-3 and RSV infections

Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
Vaccine (Impact Factor: 3.49). 07/2008; 26(27-28):3480-8. DOI: 10.1016/j.vaccine.2008.04.022
Source: PubMed

ABSTRACT The human parainfluenza viruses (hPIVs) and respiratory syncytial virus (RSV) are the leading causes of serious respiratory illness in the human pediatric population. Despite decades of research, there are currently no licensed vaccines for either the hPIV or RSV pathogens. Here we describe the testing of hPIV-3 and RSV candidate vaccines using Sendai virus (SeV, murine PIV-1) as a vector. SeV was selected as the vaccine backbone, because it has been shown to elicit robust and durable immune activities in animal studies, and has already advanced to human safety trials as a xenogenic vaccine for hPIV-1. Two new SeV-based hPIV-3 vaccine candidates were first generated by inserting either the fusion (F) gene or hemagglutinin-neuraminidase (HN) gene from hPIV-3 into SeV. The resultant rSeV-hPIV3-F and rSeV-hPIV3-HN vaccines expressed their inserted hPIV-3 genes upon infection. The inoculation of either vaccine into cotton rats elicited binding and neutralizing antibody activities, as well as interferon-gamma-producing T cells. Vaccination of cotton rats resulted in protection against subsequent challenges with either homologous or heterologous hPIV-3. Furthermore, vaccination of cotton rats with a mixture of rSeV-hPIV3-HN and a previously described recombinant SeV expressing the F protein of RSV resulted in protection against three different challenge viruses: hPIV-3, hPIV-1 and RSV. Results encourage the continued development of the candidate recombinant SeV vaccines to combat serious respiratory infections of children.

Download full-text

Full-text

Available from: Laura Elena Luque de Johnson, Jul 06, 2015
0 Followers
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on the amyloid cascade hypothesis, many reports have indicated that immunotherapy is beneficial for Alzheimer's disease (AD). We developed a mucosal immunotherapy for AD by nasal administration of recombinant Sendai virus vector carrying Aβ1-43 and mouse IL-10 cDNA. Nasal but not intramuscular administration of the vaccine induced good antibody responses to Aβ. When APP transgenic mice (Tg2576) received this vaccine once nasally, the Aβ plaque burden was significantly decreased 8 weeks after without inducing inflammation in the brain. The amount of Aβ measured by ELISA was also reduced in both soluble and insoluble fractions of the brain homogenates, and notably the Aβ oligomer (12-mer) was also apparently decreased. Tg2576 mice showed significant improvement in cognitive functions examined at 3 months after vaccination. Thus, this is an alternative immunotherapy for AD, which has an advantage in non-invasive, safe and relatively long lasting features.
    Vaccine 07/2011; 29(43):7474-82. DOI:10.1016/j.vaccine.2011.07.057 · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory syncytial virus (RSV) is among the most important and serious pediatric respiratory diseases, and yet after more than four decades of research an effective vaccine is still unavailable. This review examines the role of the immune response in reducing disease severity; considers the history of RSV vaccine development; and advocates the potential utility of Sendai virus (a murine paramyxovirus) as a xenogenic vaccine vector for the delivery of RSV antigens. The immunogenicity and protective efficacy of RSV-recombinant Sendai virus vectors constructed using reverse genetics is examined. RSV-recombinant Sendai virus is easy to grow (i.e., achieves extremely high titers in eggs), is easy to administer (intranasal drops), and elicits both B- and T-cell responses leading to protection from RSV challenge in a small-animal model. Unmodified Sendai virus is currently being studied in clinical trials as a vaccine for its closely related human cognate (human parainfluenza virus type 1). Sendai virus may prove an enormously valuable vaccine platform, permitting the delivery of recombinants targeting important pediatric respiratory pathogens, RSV chief among them.
    Viral Immunology 02/2005; 18(2):255-66. DOI:10.1089/vim.2005.18.255 · 1.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory syncytial virus (RSV) and the human parainfluenza viruses (hPIV) are the leading causes of hospitalizations for viral respiratory tract diseases in infants and young children. Despite approximately 50 years of research, there is currently no vaccine available for any of these pathogens. Sendai virus (SeV) is a mouse respiratory virus that merits consideration as a Jennerian vaccine for hPIV-1 due to its similarity with hPIV-1 in terms of sequence, structure and antigenicity. The SeV backbone can also be manipulated using reverse genetics to create SeV-based RSV and hPIV-3 vaccines. We have prepared two recombinant SeV vaccines, expressing the fusion protein of RSV and the hemagglutinin-neuraminidase protein of hPIV-3, respectively. We found that a single intranasal vaccination with the combined recombinant SeVs (‘mixed-rSeV’) protected cotton rats from challenges with hPIV-1, hPIV-3 and RSV. This discovery, combined with our preliminary clinical demonstration that intranasal administration of unmodified SeV is safe in adults and children, makes a compelling case for advanced development of the SeV-based vaccine product.
    Procedia in Vaccinology 01/2009; 1(1):41-44. DOI:10.1016/j.provac.2009.07.008