Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving.

Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA.
Nature (Impact Factor: 42.35). 08/2008; 454(7200):118-21. DOI: 10.1038/nature06995
Source: PubMed

ABSTRACT Relapse to cocaine use after prolonged abstinence is an important clinical problem. This relapse is often induced by exposure to cues associated with cocaine use. To account for the persistent propensity for relapse, it has been suggested that cue-induced cocaine craving increases over the first several weeks of abstinence and remains high for extended periods. We and others identified an analogous phenomenon in rats that was termed 'incubation of cocaine craving': time-dependent increases in cue-induced cocaine-seeking over the first months after withdrawal from self-administered cocaine. Cocaine-seeking requires the activation of glutamate projections that excite receptors for alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) in the nucleus accumbens. Here we show that the number of synaptic AMPA receptors in the accumbens is increased after prolonged withdrawal from cocaine self-administration by the addition of new AMPA receptors lacking glutamate receptor 2 (GluR2). Furthermore, we show that these new receptors mediate the incubation of cocaine craving. Our results indicate that GluR2-lacking AMPA receptors could be a new target for drug development for the treatment of cocaine addiction. We propose that after prolonged withdrawal from cocaine, increased numbers of synaptic AMPA receptors combined with the higher conductance of GluR2-lacking AMPA receptors causes increased reactivity of accumbens neurons to cocaine-related cues, leading to an intensification of drug craving and relapse.

  • [Show abstract] [Hide abstract]
    ABSTRACT: As long-term opioids are increasingly used for control of chronic pain, how pain affects the rewarding effect of opioids and hence risk of prescription opioid misuse and abuse remains a healthcare concern and a challenging issue in current pain management. In this study, using a rat model of morphine self-administration, we investigated the molecular mechanisms underlying the impact of pain on operant behavior of morphine intake and morphine seeking before and after morphine withdrawal. We found that rats with persistent pain consumed a similar amount of daily morphine to that in control rats without pain, but maintained their level-pressing behavior of morphine seeking after abstinence of morphine at 0.2 mg/kg, whereas this behavior was gradually diminished in control rats. In the central nucleus of amygdala (CeA), a limbic structure critically involved in the affective dimension of pain, proteins of GluA1 subunits of glutamate AMPA receptors were upregulated during morphine withdrawal, and viral knockdown of CeA GluA1 eliminated the morphine-seeking behavior in withdrawn rats of the pain group. Chromatin immunoprecipitation analysis revealed that the methyl CpG-binding protein 2 (MeCP2) was enriched in the promoter region of Gria1 encoding GluA1 and this enrichment was significantly attenuated in withdrawn rats of the pain group. Furthermore, viral overexpression of CeA MeCP2 repressed the GluA1 level and eliminated the maintenance of morphine-seeking behavior after morphine withdrawal. These results suggest direct MeCp2 repression of GluA1 function as a likely mechanism for morphine-seeking behavior maintained by long-lasting affective pain after morphine withdrawal. Copyright © 2015 the authors 0270-6474/15/353689-12$15.00/0.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 02/2015; 35(8):3689-700. DOI:10.1523/JNEUROSCI.3453-14.2015 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dopamine (DA) plays a major role in motor and cognitive functions as well as in reward processing by regulating glutamatergic inputs. In particular in the striatum the release of DA rapidly influences synaptic transmission modulating both AMPA and NMDA receptors. Several neurodegenerative and neuropsychiatric disorders, including Parkinson, Huntington and addiction-related diseases, manifest a dysregulation of glutamate and DA signaling. Here, we will focus our attention on the mechanisms underlying the modulation of the glutamatergic transmission by DA in striatal circuits.
    Frontiers in Cellular Neuroscience 03/2015; 9:25. DOI:10.3389/fncel.2015.00025 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Weight-loss dieting often leads to loss of control, rebound weight gain, and is a risk factor for binge pathology. Based on findings that food restriction (FR) upregulates sucrose-induced trafficking of glutamatergic AMPA receptors to the nucleus accumbens (NAc) postsynaptic density (PSD), this study was an initial test of the hypothesis that episodic "breakthrough" intake of forbidden food during dieting interacts with upregulated mechanisms of synaptic plasticity to increase reward-driven feeding. Ad libitum (AL) fed and FR subjects consumed a limited amount of 10% sucrose, or had access to water, every other day for ten occasions. Beginning three weeks after return of FR rats to AL feeding, when 24-hour chow intake and rate of body weight gain had normalized, subjects with a history of sucrose intake during FR consumed more sucrose during a four week intermittent access protocol than the two AL groups and the group that had access to water during FR. In an experiment that substituted noncontingent administration of d-amphetamine for sucrose, FR subjects displayed an enhanced locomotor response during active FR but a blunted response, relative to AL subjects, during recovery from FR. This result suggests that the enduring increase in sucrose consumption is unlikely to be explained by residual enhancing effects of FR on dopamine signaling. In a biochemical experiment which paralleled the sucrose behavioral experiment, rats with a history of sucrose intake during FR displayed increased abundance of pSer845-GluA1, GluA2, and GluA3 in the NAc PSD relative to rats with a history of FR without sucrose access and rats that had been AL throughout, whether they had a history of episodic sucrose intake or not. A history of FR, with or without a history of sucrose intake, was associated with increased abundance of GluA1. A terminal 15-min bout of sucrose intake produced a further increase in pSer845-GluA1 and GluA2 in subjects with a history of sucrose intake during FR. Generally, neither a history of sucrose intake nor a terminal bout of sucrose intake affected AMPA receptor abundance in the NAc PSD of AL subjects. Together, these results are consistent with the hypothesis, but the functional contribution of increased synaptic incorporation of AMPA receptors remains to be established. Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience 03/2015; 295. DOI:10.1016/j.neuroscience.2015.03.025 · 3.33 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014