Multiple roles for lipids in the Hedgehog signalling pathway

Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
Nature Reviews Molecular Cell Biology (Impact Factor: 36.46). 07/2008; 9(6):437-45. DOI: 10.1038/nrm2414
Source: PubMed

ABSTRACT The identification of endogenous sterol derivatives that modulate the Hedgehog (Hh) signalling pathway has begun to suggest testable hypotheses for the cellular biological functions of Patched, and for the lipoprotein association of Hh. Progress in the field of intracellular sterol trafficking has emphasized how tightly the distribution of intracellular sterol is controlled, and suggests that the synthesis of sterol derivatives can be influenced by specific sterol-delivery pathways. The combination of this field with Hh studies will rapidly give us a more sophisticated understanding of both the Hh signal-transduction pathway and the cell biology of sterol metabolism.

Download full-text


Available from: Suzanne Eaton, Aug 28, 2015
  • Source
    • "In order to act on cells at a distance from the producing cell, these signaling molecules have to move through a hydrophilic environment. Formation of oligomers (B) and lipoprotein particles (C) are thought to mask hydrophobic residues or modifications and have been implicated in the transport of hydrophobic signals such as Hh and Wg. Figure modified from (Eaton 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular signaling molecules have crucial roles in development and homeostasis, and their incorrect deployment can lead to developmental defects and disease states. Signaling molecules are released from sending cells, travel to target cells, and act over length scales of several orders of magnitude, from morphogen-mediated patterning of small developmental fields to hormonal signaling throughout the organism. We discuss how signals are modified and assembled for transport, which routes they take to reach their targets, and how their range is affected by mobility and stability.
    Developmental Cell 07/2011; 21(1):145-58. DOI:10.1016/j.devcel.2011.06.001 · 10.37 Impact Factor
  • Source
    • "Hedgehog proteins are among several secreted signaling proteins that are covalently modified by lipid moieties (Reviewed in [45]). Hedgehog family members are the only proteins that are known to be modified by cholesterol [11], and this discovery cultivated attention on the influences of lipids on morphogen signaling (Reviewed in [46]). The influences of the lipid modification on ligand release and association with multivalent particles have been well characterized [8], [10], [15], [19], [20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sonic hedgehog (Shh) signaling regulates cell growth during embryonic development, tissue homeostasis and tumorigenesis. Concentration-dependent cellular responses to secreted Shh protein are essential for tissue patterning. Shh ligand is covalently modified by two lipid moieties, cholesterol and palmitate, and their hydrophobic properties are known to govern the cellular release and formation of soluble multimeric Shh complexes. However, the influences of the lipid moieties on cellular reception and signal response are not well understood. We analyzed fully lipidated Shh and mutant forms to eliminate one or both adducts in NIH3T3 mouse embryonic fibroblasts. Quantitative measurements of recombinant Shh protein concentration, cellular localization, and signaling potency were integrated to determine the contributions of each lipid adduct on ligand cellular localization and signaling potency. We demonstrate that lipid modification is required for cell reception, that either adduct is sufficient to confer cellular association, that the cholesterol adduct anchors ligand to the plasma membrane and that the palmitate adduct augments ligand internalization. We further show that signaling potency correlates directly with cellular concentration of Shh ligand. The findings of this study demonstrate that lipid modification of Shh determines cell concentration and potency, revealing complementary functions of hydrophobic modification in morphogen signaling by attenuating cellular release and augmenting reception of Shh protein in target tissues.
    PLoS ONE 07/2011; 6(7):e21353. DOI:10.1371/journal.pone.0021353 · 3.23 Impact Factor
  • Source
    • "The abundant maternally-deposited lipids in embryos have been recognized as an energy source for early embryo development. These molecules also have important functions in diverse signaling pathways during larval development such as shaping morphogen gradients (Eaton, 2008; Hausmann et al., 2007). However, it remains unclear whether lipids participate in any way in the establishment of embryonic segmentation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-chain acyl-CoA synthetases (ACSLs) convert the long chain fatty acids to acyl-CoA esters, the activated forms participating in diverse metabolic and signaling pathways. dAcsl is the Drosophila homolog of human ACSL4 and their functions are highly conserved in the processes ranging from lipid metabolism to the establishment of visual wiring. In this study, we demonstrate that both maternal and zygotic dAcsl are required for embryonic segmentation. The abdominal segmentation defects of dAcsl mutants resemble those of gap gene knirps (kni). The central expression domain of Kni transcripts or proteins was reduced whereas the adjacent domains of another gap gene Hunchback (Hb) were correspondingly expanded in these mutants. Consequently, the striped pattern of the pair-rule gene Even-skipped (Eve) was disrupted. We propose that dAcsl plays a role in embryonic segmentation at least by shifting the anteroposterior boundaries of two gap genes.
    Developmental Biology 03/2011; 353(2):259-65. DOI:10.1016/j.ydbio.2011.02.030 · 3.64 Impact Factor
Show more