Open-label, dose escalation phase I study in healthy volunteers to evaluate the safety and pharmacokinetics of a human monoclonal antibody to Clostridium difficile toxin A

Beth Israel Deaconess Medical Center, University of Massachusetts Medical School, Boston, Massachusetts, USA.
Vaccine (Impact Factor: 3.49). 07/2008; 26(27-28):3404-9. DOI: 10.1016/j.vaccine.2008.04.042
Source: PubMed

ABSTRACT Recent data suggest that Clostridium difficile-associated diarrhea is becoming more severe and difficult to treat. Antibody responses to C. difficile toxin A are protective against symptomatic disease and recurrence. We examined the safety and pharmacokinetics (pk) of a novel neutralizing human monoclonal antibody against C. difficile toxin A (CDA1) in healthy adults.
Five cohorts with 6 subjects each received a single intravenous infusion of CDA1 at escalating doses of 0.3, 1, 5, 10, and 20 mg/kg. Safety evaluations took place on days 1, 2, 3, 7, 14, 28, and 56 post-infusion. Samples for pk analysis were obtained before and after infusion, and at each safety evaluation. Serum CDA1 antibody concentrations and human anti-human antibody (HAHA) titers were measured with enzyme-linked immunosorbent assays. A noncompartmental model was used for pk analysis.
Thirty subjects were enrolled. The median age was 27.5 yrs. There were no serious adverse events (AE) related to CDA1. Twenty-one of the 48 reported non-serious adverse events were possibly related to CDA1, and included transient blood pressure changes requiring no treatment, nasal congestion, headache, abdominal cramps, nausea, and self-limited diarrhea. Serum CDA1 concentrations increased with escalating doses: mean C(max) ranged from 6.82 microg/ml for the 0.3 mg/kg cohort to 511 microg/ml for the 20 mg/kg cohort. The geometric mean values of the half-life of CDA1 ranged between 25.3 and 31.8 days, and the volume of distribution approximated serum. No subject formed detectable HAHA titers.
Administration of CDA1 as a single intravenous infusion was safe and well tolerated. C(max) increased proportionally with increasing doses. A randomized study of CDA1 in patients with C. difficile associated diarrhea is underway.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus (DENV) infection is an arthropod-borne disease with increasing prevalence worldwide. Attempts have been made to develop therapeutic molecules for treatment for DENV infection. However, most of potentially therapeutic DENV monoclonal antibody was originated from mouse, which could cause undesirable effects in human recipients. Thus, fully human antibody is preferable for therapeutic development. Human single-chain variable fragments (HuScFv) with inhibitory effect to DENV infection were generated in this study. HuScFv molecules were screened and selected from the human antibody phage display library by using purified recombinant DENV full-length envelope (FL-E) and its domain III (EDIII) proteins as target antigens for biopanning. HuScFv molecules were then tested for their bindings to DENV particles by indirect ELISA and immunofluorescent microscopy. EDIII-specific HuScFv exhibited neutralizing effect to DENV infection in Vero cells in a dose-dependent manner as determined by plaque formation and cell ELISA. Epitope mapping and molecular docking results concordantly revealed interaction of HuScFv to functional loop structure in EDIII of the DENV E protein. The neutralizing HuScFv molecule warrants further development as a therapeutic biomolecule for DENV infection. No approved vaccine and specific drug for dengue virus (DENV) infection are available; thus, their developments are urgently required. The human single-chain variable antibody fragments (HuScFv) specific to DENV envelope (E) protein are potential to be developed as therapeutic biomolecules. HuScFv that bound specifically to recombinant full-length DENV E (FL-E) and its domain III (EDIII) were generated and testified for its inhibitory effect in DENV infection. EDIII-specific HuScFv inhibited DENV infection in a dose-dependent manner and has potential to be further developed as a therapeutic biomolecule for DENV infection.
    Letters in Applied Microbiology 10/2013; DOI:10.1111/lam.12186 · 1.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have demonstrated a correlation between Clostridium difficile anti-toxin A serum antibodies and protection against symptomatic disease and recurrence. A neutralizing monoclonal antibody to C. difficile toxin A (CDA1) developed by MBL and Medarex, Inc. was studied in a phase II, randomized, double-blind, placebo-controlled trial in patients receiving standard of care treatment for C. difficile infection (CDI). Twenty-nine subjects received a single intravenous infusion of 10mg/kg CDA1 and 17 subjects received placebo and were evaluated for recurrence of CDI during the 56-day study period. Serum antibodies against C. difficile toxin A and B were measured by ELISA and cytotoxicity assay at various time points before and after infusion. CDI recurrence occurred in 5 of 29 (17%) in the CDA1 group and 3 of 17 (18%) (p=NS) in the placebo group with a trend toward delay in time to recurrence in the group treated with CDA1. The geometric mean concentration of antibody to an epitope of the receptor-binding domain of toxin B (0.300 and 1.20microg/ml, respectively; p=0.02) and geometric mean titer of neutralizing B antibody (8.00 and 100, respectively; p=0.02) at study day 28 were lower for those subjects with recurrence compared to those who did not recur. In addition, a significantly greater proportion of subjects who recurred were infected with the epidemic BI/NAP1/027 strain compared with those that did not recur (88% vs. 22%; p=0.002). Finally, in a multiple logistic regression analysis neutralizing anti-toxin B at day 14 (p<0.001), anti-toxin A at day 28 (p<0.001) and infection with the BI/NAP1/027 strain at enrollment (p=0.002) were all predictive of CDI recurrence. In this prospective study, lower concentrations of neutralizing anti-toxin B and anti-toxin A antibody and infection with the BI/NAP1/027 strain of C. difficile were significantly associated with recurrence of CDI.
    Vaccine 11/2009; 28(4):965-9. DOI:10.1016/j.vaccine.2009.10.144 · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clostridium difficile is a spore-forming anaerobic gram-positive organism that is the leading cause of antibiotic-associated nosocomial infectious diarrhea in the Western world. This article describes the evolving epidemiology of C difficile infection (CDI) in the twenty-first century, evaluates the importance of vaccines against the disease, and defines the roles of both innate and adaptive host immune responses in CDI. The effects of passive immunotherapy and active vaccination against CDI in both humans and animals are also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
    Infectious Disease Clinics of North America 03/2015; 29(1):145-162. DOI:10.1016/j.idc.2014.11.013 · 2.31 Impact Factor