Article

Migraine headache is not associated with cerebral or meningeal vasodilatation--a 3T magnetic resonance angiography study.

Department of Neurology (K5-Q), Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands.
Brain (Impact Factor: 10.23). 05/2008; 131(Pt 8):2192-200. DOI: 10.1093/brain/awn094
Source: PubMed

ABSTRACT Migraine headache is widely believed to be associated with cerebral or meningeal vasodilatation. Human evidence for this hypothesis is lacking. 3 Tesla magnetic resonance angiography (3T MRA) allows for repetitive, non-invasive, sensitive assessment of intracranial vasodilatation and blood flow. Nitroglycerine (NTG) can faithfully induce migraine attacks facilitating pathophysiological studies in migraine. Migraineurs (n = 32) randomly received NTG (IV 0.5 microg/kg/min for 20 min; n = 27) or placebo (n = 5; for blinding reasons). Using 3T MRA, we measured: (i) blood flow in the basilar (BA) and internal carotid arteries (ICA) and (ii) diameters of the middle meningeal, external carotid, ICA, middle cerebral, BA and posterior cerebral arteries at three timepoints: (a) at baseline, outside an attack; (b) during infusion of NTG or placebo and (c) during a provoked attack or, if no attack had occurred, at 6 h after infusion. Migraine headache was provoked in 20/27 (74%) migraineurs who received NTG, but in none of the five patients who received placebo. The headache occurred between 1.5 h and 5.5 h after infusion and was unilateral in 18/20 (90%) responders. During NTG (but not placebo) infusion, there was a transient 6.7-30.3% vasodilatation (P < 0.01) of all blood vessels. During migraine, blood vessel diameters were no different from baseline, nor between headache and non-headache sides. There were no changes in BA and ICA blood flow during either NTG infusion or migraine. In contrast to widespread belief, migraine attacks are not associated with vasodilatation of cerebral or meningeal blood vessels. Future anti-migraine drugs may not require vasoconstrictor action.

0 Bookmarks
 · 
101 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hypothesis that migraine pain is caused by vasodilation has been challenged by clinical and experimental evidence.
    Revue Neurologique 09/2014; DOI:10.1016/j.neurol.2014.07.010 · 0.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Migraine is a severe and debilitating disorder of the brain that involves a constellation of neurological symptoms alongside head pain. Its pathophysiology is only beginning to be understood, and is thought to involve activation and sensitization of trigeminovascular nociceptive pathways that innervate the cranial vasculature, and activation of brain stem nuclei. Much of our understanding of migraine pathophysiology stems from research conducted in animal models over the last 30 years, and the development of unique assays in animals that try to model specific aspects of migraine pathophysiology related to particular symptoms. This review will highlight some of the latest findings from these established animal models, as well as discuss the latest in the development of novel approaches in animals to study migraine.
    Current Pain and Headache Reports 11/2014; 18(11):462. DOI:10.1007/s11916-014-0462-z · 2.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Migraine is defined as recurrent attack of headache that are commonly unilateral and accompanied by gastrointestinal and visual disorders. Migraine is more prevalent in females than males with a ratio of 3:1. It is primarily a complex neurovascular disorder involving local vasodilation of intracranial, extracerebral blood vessels and simultaneous stimulation of surrounding trigeminal sensory nervous pain pathway that results in headache. The activation of 'trigeminovascular system' causes release of various vasodilators, especially calcitonin gene-related peptide (CGRP) that induces pain response. At the same time, decreased levels of neurotransmitter, serotonin have been observed in migraineurs. Serotonin receptors have been found on the trigeminal nerve and cranial vessels and their agonists especially triptans prove effective in migraine treatment. It has been found that triptans act on trigeminovascular system and bring the elevated serum levels of key molecules like calcitonin gene related peptide (CGRP) to normal. Currently CGRP receptor antagonists, olcegepant and telcagepant are under consideration for antimigraine therapeutics. It has been observed that varying levels of ovarian hormones especially estrogen influence serotonin neurotransmission system and CGRP levels making women more predisposed to migraine attacks. This review provides comprehensive information about the role of serotonin and CGRP in migraine, specifically the menstrual migraine.
    Annals of Neurosciences 04/2012; 19(2):88-94. DOI:10.5214/ans.0972.7531.12190210
    This article is viewable in ResearchGate's enriched format