Article

Lysosomal myopathies: an excessive build-up in autophagosomes is too much to handle.

Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan.
Neuromuscular Disorders (Impact Factor: 3.13). 08/2008; 18(7):521-9. DOI: 10.1016/j.nmd.2008.04.010
Source: PubMed

ABSTRACT Lysosomes are membrane-bound acidic organelles that contain hydrolases used for intracellular digestion of various macromolecules in a process generally referred to as autophagy. In normal skeletal and cardiac muscles, lysosomes usually appear morphologically unremarkable and thus are not readily visible on light microscopy. In distinct neuromuscular disorders, however, lysosomes have been shown to be structurally abnormal and functionally impaired, leading to the accumulation of autophagic vacuoles in myofibers. More specifically, there are myopathies in which buildup of these autophagic vacuoles seem to predominate the pathological picture. In such conditions, autophagy is considered not merely a secondary event, but a phenomenon that actually contributes to disease pathomechanism and/or progression. At present, there are two disorders in the muscle which are associated with primary defect in lysosomal proteins, namely Danon disease and Pompe disease. Other myopathies which have prominent autophagy in the skeletal muscle include X-linked myopathy with excessive autophagy (XMEA). In this review, these disorders are briefly characterized, and the role of autophagy in the context of the pathomechanism of these disorders is highlighted.

0 Bookmarks
 · 
121 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital and inherited myopathies in dogs are faithful models of human muscle diseases and are being recognized with increasing frequency. In fact, canine models of dystrophin deficient muscular dystrophy and X-linked myotubular myopathy are of tremendous value in the translation of new and promising therapies for the treatment of these diseases. We have recently identified a family of Australian Rottweilers in which male puppies were clinically affected with severe muscle weakness and atrophy that resulted in early euthanasia or death. X-linked myotubular myopathy was suspected based on the early and severe clinical presentation and histopathological changes within muscle biopsies. The aim of this study was to determine the genetic basis for myopathy in these dogs and compare and contrast the clinical presentation, histopathology, ultrastructure, and mutation in this family of Rottweiler dogs with the previously described myotubular myopathy in Labrador retrievers. Histopathology, histochemistry, and ultrastructural examination of muscle biopsies from affected Rottweiler puppies were consistent with an X-linked myotubular myopathy. An unusual finding that differed from the previously reported Labradors and similar human cases was the presence of excessive autophagy and prominent autophagic vacuoles. Molecular investigations confirmed a missense mutation in exon 11 of MTM1 that was predicted to result in a non-functional phosphatase activity. Although the clinical presentations and histopathology were similar, the MTM1 p.(Q384P) mutation is different from the p.(N155K) mutation in exon 7 affecting Labrador retrievers with X-linked myotubular myopathy. Here we describe a second pathogenic mutation in MTM1 causing X-linked myotubular myopathy in dogs. Our findings suggest a variety of MTM1 mutations in dogs as seen in human patients. The number of MTM1 mutations resulting in similar severe and progressive clinical myopathy and histopathological changes are likely to increase as canine myopathies are further characterized.
    Skeletal muscle. 01/2015; 5(1):1.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X-linked Myopathy with Excessive Autophagy (XMEA) is a childhood onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p, VMA21 is an essential assembly chaperone of the vacuolar ATPase (V-ATPase), the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH which reduces lysosomal degradative ability and blocks autophagy. This reduces cellular free amino acids which leads to downregulation of the mTORC1 pathway, and consequent increased macroautophagy resulting in proliferation of large and ineffective autolysosomes that engulf sections of cytoplasm, merge, and vacuolate the cell. Our results uncover a novel mechanism of disease, namely macroautophagic overcompensation leading to cell vacuolation and tissue atrophy
    Acta Neuropathologica 03/2013; 125(3):439-57. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Lysosomal Associated Membrane Protein type-2 (LAMP-2) is an abundant lysosomal membrane protein with an important role in immunity, macroautophagy (MA) and chaperone-mediated autophagy (CMA). Mutations within the Lamp2 gene cause Danon disease, an X-linked lysosomal storage disorder characterized by (cardio)myopathy and intellectual dysfunction. The pathological hallmark of this disease is an accumulation of glycogen and autophagic vacuoles in cardiac and skeletal muscle that, along with the myopathy, is also present in LAMP-2-deficient mice. Intellectual dysfunction observed in the human disease suggests a pivotal role of LAMP-2 within brain. LAMP-2A, one specific LAMP-2 isoform, was proposed to be important for the lysosomal degradation of selective proteins involved in neurodegenerative diseases such as Huntington¿s and Parkinson¿s disease.To elucidate the neuronal function of LAMP-2 we analyzed knockout mice for neuropathological changes, MA and steady-state levels of CMA substrates. The absence of LAMP-2 in murine brain led to inflammation and abnormal behavior, including motor deficits and impaired learning. The latter abnormality points to hippocampal dysfunction caused by altered lysosomal activity, distinct accumulation of p62-positive aggregates, autophagic vacuoles and lipid storage within hippocampal neurons and their presynaptic terminals. The absence of LAMP-2 did not apparently affect MA or steady-state levels of selected CMA substrates in brain or neuroblastoma cells under physiological and prolonged starvation conditions.Our data contribute to the understanding of intellectual dysfunction observed in Danon disease patients and highlight the role of LAMP-2 within the central nervous system, particularly the hippocampus.
    Acta neuropathologica communications. 01/2015; 3(1):6.

Full-text (2 Sources)

Download
417 Downloads
Available from
May 17, 2014