Article

4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0T.

Department of Radiology, University of Bonn, Bonn, Germany.
Journal of Magnetic Resonance Imaging (Impact Factor: 2.57). 07/2008; 27(6):1455-60. DOI: 10.1002/jmri.21354
Source: PubMed

ABSTRACT To present a new 4D method that is designed to provide high spatial resolution MR angiograms at subsecond temporal resolution by combining different techniques of view sharing with parallel imaging at 3.0T.
In the keyhole-based method, a central elliptical cylinder in k-space is repeated n times (keyhole) with a random acquisition (CENTRA), and followed by the readout of the periphery of k-space. 4D-MR angiography with CENTRA keyhole (4D-TRAK) was combined with parallel imaging (SENSE) and partial Fourier imaging. In total, a speed-up factor of 66.5 (6.25 [CENTRA keyhole] x 8 [SENSE] x 1.33 [partial Fourier imaging]) was achieved yielding a temporal resolution of 608 ms and a spatial resolution of (1.1 x 1.4 x 1.1) mm(3) with whole-brain coverage 4D-TRAK was applied to five patients and compared with digital subtraction angiography (DSA).
4D-TRAK was successfully completed with an acceleration factor of 66.5 in all five patients. Sharp images were acquired without any artifacts possibly created by the transition of the central cylinder and the reference dataset. MRA findings were concordant with DSA.
4D time-resolved MRA with keyhole (4D-TRAK) is feasible using a combination of CENTRA, keyhole, and SENSE at 3.0T and allows for more than 60 times accelerated MRA with high spatial resolution.

0 Bookmarks
 · 
107 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study attempt to develope and suggest a new, minimize side effects process for calculate a time to peak enhancement of contrast level by using blood flow instead of current mathematical process. We conducted a studies 127 patients who performed the CE MRA by using test-contrast inject way. We used measurements of a contrast inflow time and time to peak enhancement of contrast level of each cerebrovascular branch for similarity of witch cerebrovascular branch calculate a time to peak enhancement of contrast level by using blood flow in image compared with calculation a time to peak enhancement of contrast level by using current mathematical process after contrast enhancement. In this study, confidence interval were used if the variable is continuous variable; there is differences between 4 groups exist but in group 1, there is no difference with time in peak enhancement of contrast level by using mathematical method to inflow time in sinus sigmoideus. it was significant statistically, in addition there was significant low heterogeneity in Bland Altman plot. Thus, apply a new calculate a time to peak enhancement of contrast level by using blood flow method will minimize damage caused by side effect, maintain quality of image, easy and fast access. It should provide a space for the exchange of current calculate a time to peak enhancement of contrast level by using mathematical process.
    Journal of the Korea Academia-Industrial cooperation Society. 01/2013; 14(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: PurposeTo study temporal and spatial blurring artifacts from k-space view-sharing in time-resolved MR angiography (MRA) and to propose a technique for reducing these artifacts.Methods We acquired k-space data sets using a three-dimensional time-resolved MRA view-sharing sequence and retrospectively reformatted them into two reconstruction frameworks: full view-sharing via time-resolved imaging with stochastic trajectories (TWIST) and minimal k-space view-sharing and compressed sensing (CS-TWIST). The two imaging series differed in temporal footprint but not in temporal frame rate. The artifacts from view-sharing were compared qualitatively and quantitatively in nine patients in addition to a phantom experiment.ResultsCS-TWIST was able to reduce the imaging temporal footprint by two- to three-fold compared with TWIST, and the overall subjective image quality of CS-TWIST was higher than that for TWIST (P < 0.05). View sharing caused a delay in the visualization of small blood vessels, and the mean transit time of the carotid artery calculated based on TWIST reconstruction was 0.6 s longer than that for CS-TWIST (P < 0.01). In thoracic MRA, the shorter temporal footprint decreased the sensitivity to physiological motion blurring, and vessel sharpness was improved by 8.8% ± 6.0% using CS-TWIST (P < 0.05).Conclusion In time-resolved MRA, the longer temporal footprint due to view-sharing causes spatial and temporal artifacts. CS-TWIST is a promising method for reducing these artifacts. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
    Magnetic Resonance in Medicine 08/2014; · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic resonance imaging (MRI), frequently with contrast enhancement, is the preferred imaging modality for many indications in children. Practice varies widely between centers, reflecting the rapid pace of change and the need for further research. Guide-line changes, for example on contrast-medium choice, require continued practice reappraisal. This article reviews recent developments in pediatric contrast-enhanced MRI and offers recommendations on current best practice. Nine leading pediatric radiologists from internationally recognized radiology centers convened at a consensus meeting in Bordeaux, France, to discuss applications of contrast-enhanced MRI across a range of indications in children. Review of the literature indicated that few published data provide guidance on best practice in pediatric MRI. Discussion among the experts concluded that MRI is preferred over ionizing-radiation modalities for many indications, with advantages in safety and efficacy. Awareness of age-specific adaptations in MRI technique can optimize image quality. Gadolinium-based contrast media are recommended for enhancing imaging quality. The choice of most appropriate contrast medium should be based on criteria of safety, tolerability, and efficacy, characterized in age-specific clinical trials and personal experience.
    Magnetic Resonance Insights 01/2013; 6:95-111.