Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy?

Radiation Oncology Division, Breast Health Center, Naval Medical Center San Diego, San Diego, CA, USA.
CancerSpectrum Knowledge Environment (Impact Factor: 15.16). 07/2008; 100(11):773-83. DOI: 10.1093/jnci/djn148
Source: PubMed

ABSTRACT Despite nearly two decades of research investigating the use of dietary antioxidant supplementation during conventional chemotherapy and radiation therapy, controversy remains about the efficacy and safety of this complementary treatment. Several randomized clinical trials have demonstrated that the concurrent administration of antioxidants with chemotherapy or radiation therapy reduces treatment-related side effects. Some data indicate that antioxidants may protect tumor cells as well as healthy cells from oxidative damage generated by radiation therapy and some chemotherapeutic agents. However, other data suggest that antioxidants can protect normal tissues from chemotherapy- or radiation-induced damage without decreasing tumor control. We review some of the data regarding the putative benefits and potential risks of antioxidant supplementation concurrent with cytotoxic therapy. On the basis of our review of the published randomized clinical trials, we conclude that the use of supplemental antioxidants during chemotherapy and radiation therapy should be discouraged because of the possibility of tumor protection and reduced survival.

Download full-text


Available from: Jeffrey B. Blumberg, Jul 01, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Vitamin C may influence cancer progression through its antioxidant properties. However, the evidence from observational epidemiologic studies on vitamin C intake and survival following breast cancer diagnosis is not consistent, and the safety of vitamin C supplements following breast cancer diagnosis has not been extensively studied. Methods: Using a food-frequency questionnaire we investigated whether vitamin C intake was associated with survival among 3405 women diagnosed with invasive breast cancer in the Swedish Mammography Cohort. Results: From 1987–2010, there were 1055 total deaths with 416 deaths from breast cancer. Women in the highest quartile of pre-diagnosis vitamin C intake had an adjusted HR (95% CI) of breast cancer death of 0.75 (0.57–0.99) compared with those in the lowest quartile (Ptrend=0.03). There was a borderline significant association between vitamin C intake and total mortality (HR=0.84; 95% CI=0.71–1.00; Ptrend=0.08). Among 717 breast cancer cases for whom post-diagnosis supplement use was available, there was no association between vitamin C supplement use (≈1000 mg) and breast cancer-specific mortality (HR=1.06; 95% CI=0.52–2.17). Conclusion: Our findings suggest that dietary vitamin C intake before breast cancer diagnosis may be associated with breast cancer survival. In addition, post-diagnosis vitamin C supplementation at the level observed in our population was not associated with survival.
    British Journal of Cancer 06/2013; 109(1). DOI:10.1038/bjc.2013.269 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are a number of intrinsic (e.g. oncogenes) and extrinsic (e.g. radiation and inflammation) factors, which may arise in reactive oxygen species (ROS), resulting in DNA instability and then cancer. In this situation, initial cancerous cells would balance the harmful effects of ROS by switching on the protective effects in a longstanding manner. In normal conditions, ROS have important role in signal transduction and gene transcription, nevertheless, ROS may act as a trigger for carcinogenesis via persistent DNA injuries as well as mutations in p53 such as conditions observed in skin, hepatocellular, and colon cancers. Some compounds like paclitaxel are able to attack cancer cells through generation of ROS or interfering with ROS metabolism, while there are a few anti-angiogenesis compounds without toxicity such as endostatin, which act as anti-neoplastic only together with another chemotherapeutic drug. Furthermore, some anti-cancer agents like piperlongumine bind to the active sites of several key cellular antioxidants including glutathione S transferase and carbonyl reductase 1 only in the cancer cells. Although the natural antioxidants can alone or in combination to the diet provide some benefits for chemoprevention, their position in cancer therapy, especially initial stages of carcinogenesis are breaking down. On the other hand antioxidants can promote the survival of detached cells from extra cellular medium playing dual activities with respect to tumorigenesis through inhibition of tumorigenesis by preventing oxidative injuries to DNA and otherwise maintenance of tumor by promoting cell survival via metabolic rescue. Hopefully, more details of antioxidant and anti-neoplastic mechanisms become clear day by day, which have made researchers to renew the strategy for designing cancer prevention or treatment.
    Toxicology and Applied Pharmacology 05/2013; DOI:10.1016/j.taap.2013.05.004 · 3.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress arises when there is a marked imbalance between the production and removal of reactive oxygen species (ROS) in favor of the prooxidant balance, leading to potential oxidative damage. ROSs were considered traditionally to be only a toxic byproduct of aerobic metabolism. However, recently, it has become apparent that ROS might control many different physiological processes such as induction of stress response, pathogen defense, and systemic signaling. Thus, the imbalance of the increased antioxidant potential, the so-called antioxidative stress, should be as dangerous as well. Here, we synthesize increasing evidence on "antioxidative stress-induced" beneficial versus harmful roles on health, disease, and aging processes. Oxidative stress is not necessarily an un-wanted situation, since its consequences may be beneficial for many physiological reactions in cells. On the other hand, there are potentially harmful effects of "antioxidative stress," especially in the cases of overconsumption of synthetic antioxidants. Antioxidants can neutralize ROS and decrease oxidative stress; however, this is not always beneficial in regard to disease formation or progression (of, e.g., cancer) or for delaying aging.
    Oxidative Medicine and Cellular Longevity 05/2012; 2012:480895. DOI:10.1155/2012/480895 · 3.36 Impact Factor