Article

Dynamic contrast-enhanced MRI and MR diffusion imaging to distinguish between glandular and stromal prostatic tissues.

Department of Radiology and Biomedical Imaging, The University of California, San Francisco, San Francisco, CA, USA.
Magnetic Resonance Imaging (Impact Factor: 2.02). 06/2008; 26(8):1071-80. DOI: 10.1016/j.mri.2008.01.033
Source: PubMed

ABSTRACT To compare peak enhancement (PE), determined from dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and the magnetic resonance (MR) directionally-averaged apparent diffusion coefficient ( ) in glandular versus stromal prostatic tissues and, with this comparison, to infer if the hypothesis that gadolinium-DTPA (Gd-DTPA) does not enter healthy glands or ducts is plausible.
MRI, MR spectroscopic imaging, DCE MRI and MR diffusion were evaluated in 17 untreated subjects with suspected or proven prostate cancer. PE and were compared in glandular-ductal tissues [normal peripheral zone and glandular benign prostatic hyperplasia (BPH)] and stromal-low ductal tissues (central gland/mixed BPH and stromal BPH).
The glandular-ductal tissues had lower PE [125+/-6.4 (% baseline)] and higher [1.57+/-0.15 (s/10(-3) mm2)] than the stromal-low ductal tissues [PE=132+/-5.5 (% baseline) (P< .0008), =1.18+/-0.20 (s/10(-3) mm2) (P< 1 x 10(-8))]. A statistical model based upon stepwise regression was generated and completely separated the tissue types: ductal Measure = 448+669 x (s/10(-3) mm2)-10.7 x PE (1/%), R2=1.0 and P<8 x 10(-10).
The very different MR results in the glandular-ductal versus stromal-low ductal tissues suggest that these tissues have different underlying structure. These results support the hypothesis that Gd-DTPA does not enter healthy prostatic glands or ducts. This may explain the higher PE and lower that previously have been reported in prostate cancer versus healthy tissue.

0 Bookmarks
 · 
120 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer is the most common malignancy in men, but only about 10% of patients die from that cancer. Recent studies suggest that not all patients benefit from a radical therapeutic approach. When prostate cancer is suspected, magnetic resonance imaging (MRI) can make an important contribution to cancer localization within the prostate. Many studies show that T2-weighted morphologic imaging should be supplemented by multiparametric MRI techniques including diffusion-weighted imaging, contrast-enhanced sequences, and MR spectroscopy. This approach detects aggressive prostate cancer with high sensitivity and specificity. The findings of multiparametric MRI additionally contribute information to the assessment of cancer aggressiveness. The use of these multiparametric MRI techniques will gain an increasing role in the clinical management of prostate cancer patients. They can help in establishing a definitive diagnosis with a minimum of invasiveness and may also contribute to optimal individualized treatment. This review article presents the different techniques of multiparametric MRI and discusses their contribution to the detection of prostate cancer. Moreover, this review outlines an objective approach to image interpretation and structured reporting of MRI findings using the PI-RADS criteria. The review concludes with an outline of approaches to prostate biopsy on the basis of MRI (transrectal ultrasound, direct MRI guidance of tissue sampling, and MRI-ultrasound fusion biopsy) and emerging future uses of MRI in the planning of focal treatment options and in the active surveillance of patients diagnosed with prostate cancer.
    Aktuelle Urologie 03/2014; 45(2):119-126. · 0.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To prospectively examine the relation between tumor vascularity and glucose metabolism in adenocarcinoma (AC) and squamous cell carcinoma(SCC) of the lung by using positron emission tomography/computed tomography (PET/CT) and dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Forty-one consecutive patients with histologically confirmed untreated NSCLC underwent routine diagnostic work-up, including DCE-MRI and PET/CT. PET/CT images were used to derive glucose metabolism (SUVmax and SUVmean), and DCE-MRI images were used to derive tumor vascularity (Ktrans, Kep, Ve and iAUC). Any differences in the DCE-MRI and PET/CT estimations between the NSCLC subtypes were determined by the Wilcoxon rank sum test. Spearman's rank correlation coefficients were calculated between the DCE-MRI parameter values and the SUV. SUVmean and SUVmax in AC were significantly lower than in SCC, but Ktrans and Ve in AC were significantly higher than in SCC. Significant correlations between SUV and DCE-MRI parameters were observed for SUVmax and Ve (ρ = -0.357, P = 0.022), SUVmean and Ktrans (ρ = -0.341, P = 0.029), and SUVmean and iAUC (ρ = -0.374, P = 0.016 ) in total; for SUVmax and iAUC (ρ = -0.420, P = 0.037), SUVmean and Ktrans (ρ = -0.411, P = 0.041), SUVmean and Kep (ρ = -0.045, P = 0.026), and SUVmean and iAUC (ρ = -0.512, P = 0.009) in AC; However, for neither in SCC. AC and SCC showed different patterns in both tumor vascularity and glucose metabolism. Tumor vascularity and glucose metabolism negatively correlated in AC, but not in SCC. These differences may underlie the heterogeneity in clinical aspect of NSCLC subtypes and have implications for their imaging profiling and monitor the treatment response.
    PLoS ONE 03/2014; 9(3):e91649. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of our study was to investigate tumor conspicuity and the discrimination potential for tumor aggressiveness on diffusion-weighted magnetic resonance imaging (DW-MRI) with high b value at 3-T. The institutional review board approved this study and waived the requirement for informed consent. A total of 50 patients with prostate cancer (69 cancer foci; 48 in the PZ, 20 in the TZ, and one in whole prostate) who underwent multiparametric prostate MRI including DW-MRI (b values: 0, 1000 s/mm2 and 0, 2000 s/mm2) on a 3-T system were included. Lesion conspicuity score (LCS) using visual assessment (1 = invisible for surrounding normal site; 2 = slightly high intensity; 3 = moderately high; and 4 = very high) and tumor-normal signal intensity ratio (TNR) were assessed, and apparent diffusion coefficient (ADC, ×10-3 mm2/s) of the tumor regions and normal regions were measured. Mean LCS and TNR at 0, 2000 s/mm2 was significantly higher than those at 0, 1000 s/mm2 (p<0.001 for both). In addition, ADC at both 0, 1000 and 0, 2000 s/mm2 was found to distinguish intermediate or high risk cancer with Gleason score ≥7 from low risk cancer with Gleason score ≤6 (p<0.001 for both). Furthermore, ADC of tumor regions correlated with Gleason score at both 0, 1000 s/mm2 (ρ = -0.602; p<0.001) and 0, 2000 s/mm2 (ρ = -0.645; p<0.001). For tumor conspicuity and characterization of prostate cancer on DW-MRI of 3-T MRI, b = 0, 2000 s/mm2 is more useful than b = 0, 1000 s/mm2.
    PLoS ONE 05/2014; 9(5):e96619. · 3.53 Impact Factor

Preview

Download
1 Download
Available from