Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7.

Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2008; 105(22):7738-43. DOI: 10.1073/pnas.0802857105
Source: PubMed

ABSTRACT VEGF has been shown to regulate endothelial cell (EC) proliferation and migration. However, the nuclear mediators of the actions of VEGF in ECs have not been fully defined. We show that VEGF induces the phosphorylation of three conserved serine residues in histone deacetylase 7 (HDAC7) via protein kinase D, which promotes nuclear export of HDAC7 and activation of VEGF-responsive genes in ECs. Expression of a signal-resistant HDAC7 mutant protein in ECs inhibits proliferation and migration in response to VEGF. These results demonstrate that phosphorylation of HDAC7 serves as a molecular switch to mediate VEGF signaling and endothelial function.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The prevalence and incidence of trauma-related injuries, coronary heart disease and other chronic diseases increase dramatically with age. This population sector is therefore a regular consumer of different types of drugs that may affect platelet aggregation and the coagulation cascade. We have evaluated whether the consumption of acetylsalicylic acid, acenocoumarol, glucosamine sulfate and chondroitin sulfate, and therefore their presence in blood, could interfere with the preparation and biological outcomes of plasma rich in growth factors (PRGF). Clotting time, clot retraction and platelet activation of PRGF was evaluated. PRGF growth factor content and the release of different biomolecules by tendon fibroblasts were also quantified, as well as cell proliferation and cell migration. The preparation and biological potential of PRGF is not affected by the intake of the evaluated drugs, and solely its angiogenic potential and its capacity to induce HA and fibronectin synthesis, is reduced in patients taking anti-coagulants.
    Growth factors (Chur, Switzerland) 11/2014; 33(1):1-8. DOI:10.3109/08977194.2014.977437 · 3.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Class IIa histone deacetylases (HDACs4, -5, -7, and -9) modulate the physiology of the human cardiovascular, musculoskeletal, nervous and immune systems. The regulatory capacity of this family of enzymes stems from their ability to shuttle between nuclear and cytoplasmic compartments in response to signal-driven post-translational modification. Here, we review the current knowledge of modifications that control spatial and temporal HDAC functions by regulating subcellular localization, transcriptional functions, and cell cycle-dependent activity, ultimately impacting on human disease. We discuss the contribution of these modifications to cardiac and vascular hypertrophy, myoblast differentiation, neuronal cell survival, and neurodegenerative disorders. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Molecular &amp Cellular Proteomics 01/2015; 14(3). DOI:10.1074/mcp.O114.046565 · 7.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Histone deacetylases (Hdacs) regulate endochondral ossification by suppressing gene transcription and modulating cellular responses to growth factors and cytokines. We previously showed that Hdac7 suppresses Runx2 activity and osteoblast differentiation. In this study, we examined the role of Hdac7 in postnatal chondrocytes. Hdac7 was highly expressed in proliferating cells within the growth plate. Postnatal tissue-specific ablation of Hdac7 with a tamoxifen-inducible collagen type 2a1-driven Cre recombinase increased proliferation and β-catenin levels in growth plate chondrocytes and expanded the proliferative zone. Similar results were obtained in primary chondrocyte cultures where Hdac7 was deleted with adenoviral-Cre. Hdac7 bound β-catenin in proliferating chondrocytes, but stimulation of chondrocyte maturation promoted the translocation of Hdac7 to the cytoplasm where it was degraded by the proteasome. As a result β-catenin levels and transcription activity increased in the nucleus. These data demonstrate that Hdac7 suppresses proliferation and β-catenin activity in chondrocytes. Reducing Hdac7 levels in early chondrocytes may promote the expansion and regeneration of cartilage tissues.
    Journal of Biological Chemistry 11/2014; 290(1). DOI:10.1074/jbc.M114.596247 · 4.60 Impact Factor