Article

The neural mechanisms underlying the influence of pavlovian cues on human decision making.

Computation and Neural Systems, California Institute of Technology, Pasadena, California 91125, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 06/2008; 28(22):5861-6. DOI: 10.1523/JNEUROSCI.0897-08.2008
Source: PubMed

ABSTRACT In outcome-specific transfer, pavlovian cues that are predictive of specific outcomes bias action choice toward actions associated with those outcomes. This transfer occurs despite no explicit training of the instrumental actions in the presence of pavlovian cues. The neural substrates of this effect in humans are unknown. To address this, we scanned 23 human subjects with functional magnetic resonance imaging while they made choices between different liquid food rewards in the presence of pavlovian cues previously associated with one of these outcomes. We found behavioral evidence of outcome-specific transfer effects in our subjects, as well as differential blood oxygenation level-dependent activity in a region of ventrolateral putamen when subjects chose, respectively, actions consistent and inconsistent with the pavlovian-predicted outcome. Our results suggest that choosing an action incompatible with a pavlovian-predicted outcome might require the inhibition of feasible but nonselected action-outcome associations. The results of this study are relevant for understanding how marketing actions can affect consumer choice behavior as well as for how environmental cues can influence drug-seeking behavior in addiction.

0 Followers
 · 
109 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Life demands that we adapt our behaviour continuously in situations in which much of our incoming information is emotional and unrelated to our immediate behavioural goals. Such information is often processed without our consciousness. This poses an intriguing question of whether subconscious exposure to irrelevant emotional information (e.g. the surrounding social atmosphere) affects the way we learn. Here, we addressed this issue by examining whether the learning of cue-reward associations changes when an emotional facial expression is shown subconsciously or consciously prior to the presentation of a reward-predicting cue. We found that both subconscious (0.027 s and 0.033 s) and conscious (0.047 s) emotional signals increased the rate of learning, and this increase was smallest at the border of conscious duration (0.040 s). These data suggest not only that the subconscious and conscious processing of emotional signals enhances value-updating in cue-reward association learning, but also that the computational processes underlying the subconscious enhancement is at least partially dissociable from its conscious counterpart.
    Scientific Reports 02/2015; 5:8478. DOI:10.1038/srep08478 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose a Survival Optimization System (SOS) to account for the strategies that humans and other animals use to defend against recurring and novel threats. The SOS attempts to merge ecological models that define a repertoire of contextually relevant threat induced survival behaviors with contemporary approaches to human affective science. We first propose that the goal of the nervous system is to reduce surprise and optimize actions by (i) predicting the sensory landscape by simulating possible encounters with threat and selecting the appropriate pre-encounter action and (ii) prevention strategies in which the organism manufactures safe environments. When a potential threat is encountered the (iii) threat orienting system is engaged to determine whether the organism ignores the stimulus or switches into a process of (iv) threat assessment, where the organism monitors the stimulus, weighs the threat value, predicts the actions of the threat, searches for safety, and guides behavioral actions crucial to directed escape. When under imminent attack, (v) defensive systems evoke fast reflexive indirect escape behaviors (i.e., fight or flight). This cascade of responses to threat of increasing magnitude are underwritten by an interconnected neural architecture that extends from cortical and hippocampal circuits, to attention, action and threat systems including the amygdala, striatum, and hard-wired defensive systems in the midbrain. The SOS also includes a modulatory feature consisting of cognitive appraisal systems that flexibly guide perception, risk and action. Moreover, personal and vicarious threat encounters fine-tune avoidance behaviors via model-based learning, with higher organisms bridging data to reduce face-to-face encounters with predators. Our model attempts to unify the divergent field of human affective science, proposing a highly integrated nervous system that has evolved to increase the organism's chances of survival.
    Frontiers in Neuroscience 01/2015; 9:55. DOI:10.3389/fnins.2015.00055
  • [Show abstract] [Hide abstract]
    ABSTRACT: In detoxified alcohol-dependent patients, alcohol-related stimuli can promote relapse. However, to date, the mechanisms by which contextual stimuli promote relapse have not been elucidated in detail. One hypothesis is that such contextual stimuli directly stimulate the motivation to drink via associated brain regions like the ventral striatum and thus promote alcohol seeking, intake and relapse. Pavlovian-to-Instrumental-Transfer (PIT) may be one of those behavioral phenomena contributing to relapse, capturing how Pavlovian conditioned (contextual) cues determine instrumental behavior (e.g. alcohol seeking and intake). We used a PIT paradigm during functional magnetic resonance imaging to examine the effects of classically conditioned Pavlovian stimuli on instrumental choices in n = 31 detoxified patients diagnosed with alcohol dependence and n = 24 healthy controls matched for age and gender. Patients were followed up over a period of 3 months. We observed that (1) there was a significant behavioral PIT effect for all participants, which was significantly more pronounced in alcohol-dependent patients; (2) PIT was significantly associated with blood oxygen level-dependent (BOLD) signals in the nucleus accumbens (NAcc) in subsequent relapsers only; and (3) PIT-related NAcc activation was associated with, and predictive of, critical outcomes (amount of alcohol intake and relapse during a 3 months follow-up period) in alcohol-dependent patients. These observations show for the first time that PIT-related BOLD signals, as a measure of the influence of Pavlovian cues on instrumental behavior, predict alcohol intake and relapse in alcohol dependence. © 2015 Society for the Study of Addiction.
    Addiction Biology 04/2015; DOI:10.1111/adb.12243 · 5.93 Impact Factor