Article

Increased Binding of Peripheral Benzodiazepine Receptor in Alzheimer's Disease Measured by Positron Emission Tomography with [C-11]DAA1106

Clinical Neuroimaging Section, Department of Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan.
Biological psychiatry (Impact Factor: 9.47). 06/2008; 64(10):835-41. DOI: 10.1016/j.biopsych.2008.04.021
Source: PubMed

ABSTRACT Peripheral benzodiazepine receptor (PBR) in the brain of Alzheimer's disease (AD) patients has been discussed in relation to the role of gliosis in AD. The PBR was shown to have the ability to reflect activated glial cells, including microglia. The role of activated microglia in AD is an important topic in the pathophysiology of AD. The aim of this study was to quantify PBR in AD brain with a new high-sensitive PBR ligand, [(11)C]DAA1106.
Positron emission tomography (PET) scans with [(11)C]DAA1106, a potent and selective ligand for PBR, were performed on 10 patients with AD and 10 age-matched control subjects. All patients had mild to moderate dementia. Duration of illness was 1-3 years at the time of the scans. The PBR binding in the regions of interest was quantified by binding potential (BP) obtained from compartmental model analysis with plasma input function.
Mean BP was increased in the brain of AD patients compared with control subjects in all measured regions. Statistical significance reached across many of the regions examined, including dorsal and medial prefrontal cortex, lateral temporal cortex, parietal cortex, occipital cortex, anterior cingulate cortex, striatum, and cerebellum.
The broad increase of PBR binding measured with [(11)C]DAA1106 in the brain of AD patients suggests a widespread existence of cellular reactions with PBR in relatively early-stage AD.

Download full-text

Full-text

Available from: Fumihiko Yasuno, Jul 23, 2014
0 Followers
 · 
118 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When microglia become activated (an integral part of neuroinflammation), cellular morphology changes and expression of translocator protein (TSPO) 18kDa is increased. Over the past several years, [(11)C]DAA1106 has emerged as a reliable radiotracer for labeling TSPO with high affinity during positron emission tomography (PET) scanning. While [(11)C]DAA1106 PET scanning has been used in several research studies, a radiation dosimetry study of this radiotracer in humans has not yet been published.
    Nuclear Medicine and Biology 08/2014; DOI:10.1016/j.nucmedbio.2014.07.004 · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroinflammation is a pathological hallmark of Alzheimer's disease, but its role in cognitive impairment and its course of development during the disease are largely unknown. To address these unknowns, we used positron emission tomography with (11)C-PBR28 to measure translocator protein 18 kDa (TSPO), a putative biomarker for inflammation. Patients with Alzheimer's disease, patients with mild cognitive impairment and older control subjects were also scanned with (11)C-Pittsburgh Compound B to measure amyloid burden. Twenty-nine amyloid-positive patients (19 Alzheimer's, 10 mild cognitive impairment) and 13 amyloid-negative control subjects were studied. The primary goal of this study was to determine whether TSPO binding is elevated in patients with Alzheimer's disease, and the secondary goal was to determine whether TSPO binding correlates with neuropsychological measures, grey matter volume, (11)C-Pittsburgh Compound B binding, or age of onset. Patients with Alzheimer's disease, but not those with mild cognitive impairment, had greater (11)C-PBR28 binding in cortical brain regions than controls. The largest differences were seen in the parietal and temporal cortices, with no difference in subcortical regions or cerebellum. (11)C-PBR28 binding inversely correlated with performance on Folstein Mini-Mental State Examination, Clinical Dementia Rating Scale Sum of Boxes, Logical Memory Immediate (Wechsler Memory Scale Third Edition), Trail Making part B and Block Design (Wechsler Adult Intelligence Scale Third Edition) tasks, with the largest correlations observed in the inferior parietal lobule. (11)C-PBR28 binding also inversely correlated with grey matter volume. Early-onset (<65 years) patients had greater (11)C-PBR28 binding than late-onset patients, and in parietal cortex and striatum (11)C-PBR28 binding correlated with lower age of onset. Partial volume corrected and uncorrected results were generally in agreement; however, the correlation between (11)C-PBR28 and (11)C-Pittsburgh Compound B binding was seen only after partial volume correction. The results suggest that neuroinflammation, indicated by increased (11)C-PBR28 binding to TSPO, occurs after conversion of mild cognitive impairment to Alzheimer's disease and worsens with disease progression. Greater inflammation may contribute to the precipitous disease course typically seen in early-onset patients. (11)C-PBR28 may be useful in longitudinal studies to mark the conversion from mild cognitive impairment or to assess response to experimental treatments of Alzheimer's disease.
    Brain 06/2013; 136(7). DOI:10.1093/brain/awt145 · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Local production of neurosteroids such as progesterone and allopregnanolone confers neuroprotection in central nervous system (CNS) inflammatory diseases. The mitochondrial translocator protein (TSPO) performs a rate-limiting step in the conversion of cholesterol to pregnenolone and its steroid derivatives. Previous studies have shown that TSPO is upregulated in microglia and astroglia during neural inflammation, and radiolabelled TSPO ligands such as PK11195 have been used to image and localize injury in the CNS. Recent studies have shown that modulating TSPO activity with pharmacological ligands such as etifoxine can initiate the production of neurosteroids locally in the injured CNS. In this study, we examined the effects of etifoxine, a clinically available anxiolytic drug, in the development and progression of mouse experimental autoimmune encephalomyelitis (EAE), an experimental model for multiple sclerosis (MS). Our results showed that etifoxine attenuated EAE severity when administered before the development of clinical signs and also improved symptomatic recovery when administered at the peak of the disease. In both cases, recovery was correlated with diminished inflammatory pathology in the lumbar spinal cord. Modulation of TSPO activity by etifoxine led to less peripheral immune cell infiltration of the spinal cord, and increased oligodendroglial regeneration after inflammatory demyelination in EAE. Our results suggest that a TSPO ligand, e.g. etifoxine, could be a potential new therapeutic option for MS with benefits that could be comparable to the administration of systemic steroids but potentially avoiding the detrimental side effects of long-term direct use of steroids.
    EMBO Molecular Medicine 06/2013; 5(6). DOI:10.1002/emmm.201202124 · 8.25 Impact Factor