Article

Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila.

MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
Cell (Impact Factor: 31.96). 06/2008; 133(5):891-902. DOI: 10.1016/j.cell.2008.03.034
Source: PubMed

ABSTRACT The timing mechanisms responsible for terminating cell proliferation toward the end of development remain unclear. In the Drosophila CNS, individual progenitors called neuroblasts are known to express a series of transcription factors endowing daughter neurons with different temporal identities. Here we show that Castor and Seven-Up, members of this temporal series, regulate key events in many different neuroblast lineages during late neurogenesis. First, they schedule a switch in the cell size and identity of neurons involving the targets Chinmo and Broad Complex. Second, they regulate the time at which neuroblasts undergo Prospero-dependent cell-cycle exit or Reaper/Hid/Grim-dependent apoptosis. Both types of progenitor termination require the combined action of a late phase of the temporal series and indirect feedforward via Castor targets such as Grainyhead and Dichaete. These studies identify the timing mechanism ending CNS proliferation and reveal how aging progenitors transduce bursts of transcription factors into long-lasting changes in cell proliferation and cell identity.

0 Bookmarks
 · 
87 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Members of the SWI/SNF chromatin-remodeling complex are among the most frequently mutated genes in human cancer, but how they suppress tumorigenesis is currently unclear. Here, we use Drosophila neuroblasts to demonstrate that the SWI/SNF component Osa (ARID1) prevents tumorigenesis by ensuring correct lineage progression in stem cell lineages. We show that Osa induces a transcriptional program in the transit-amplifying population that initiates temporal patterning, limits self-renewal, and prevents dedifferentiation. We identify the Prdm protein Hamlet as a key component of this program. Hamlet is directly induced by Osa and regulates the progression of progenitors through distinct transcriptional states to limit the number of transit-amplifying divisions. Our data provide a mechanistic explanation for the widespread tumor suppressor activity of SWI/SNF. Because the Hamlet homologs Evi1 and Prdm16 are frequently mutated in cancer, this mechanism could well be conserved in human stem cell lineages. PAPERCLIP:
    Cell 03/2014; 156(6):1259-73. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sox proteins encompass an evolutionary conserved family of transcription factors with critical roles in animal development and stem cell biology. In common with vertebrates, the Drosophila group B proteins SoxNeuro and Dichaete are involved in central nervous system development, where they play both similar and unique roles in gene regulation. Sox genes show extensive functional redundancy across metazoans, but the molecular basis underpinning functional compensation mechanisms at the genomic level are currently unknown.
    Genome biology. 05/2014; 15(5):R74.
  • [Show abstract] [Hide abstract]
    ABSTRACT: While the growth of the developing brain is known to be well-protected compared to other organs in the face of nutrient restriction (NR), careful analysis has revealed a range of structural alterations and long-term neurological defects. Yet, despite intensive studies, little is known about the basic principles that govern brain development under nutrient deprivation. For over 20 years, Drosophila has proved to be a useful model for investigating how a functional nervous system develops from a restricted number of neural stem cells (NSCs). Recently, a few studies have started to uncover molecular mechanisms as well as region-specific adaptive strategies that preserve brain functionality and neuronal repertoire under NR, while modulating neuron numbers. Here, we review the developmental constraints that condition the response of the developing brain to NR. We then analyze the recent Drosophila work to highlight key principles that drive sparing and plasticity in different regions of the central nervous system (CNS). As simple animal models start to build a more integrated picture, understanding how the developing brain copes with NR could help in defining strategies to limit damage and improve brain recovery after birth.
    Frontiers in Physiology 01/2014; 5:117.

Full-text (2 Sources)

View
26 Downloads
Available from
May 21, 2014