Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the "default system" of the brain

Department of Psychiatry, University of Cologne, Kerpener Str. 62, 50924 Cologne, Germany.
Consciousness and Cognition (Impact Factor: 2.31). 07/2008; 17(2):457-67. DOI: 10.1016/j.concog.2008.03.013
Source: PubMed

ABSTRACT The "default system" of the brain has been described as a set of regions which are 'activated' during rest and 'deactivated' during cognitively effortful tasks. To investigate the reliability of task-related deactivations, we performed a meta-analysis across 12 fMRI studies. Our results replicate previous findings by implicating medial frontal and parietal brain regions as part of the "default system". However, the cognitive correlates of these deactivations remain unclear. In light of the importance of social cognitive abilities for human beings and their propensity to engage in such activities, we relate our results to findings from neuroimaging studies of social cognition. This demonstrates a remarkable overlap between the brain regions typically involved in social cognitive processes and the "default system". We, henceforth, suggest that the physiological 'baseline' of the brain is intimately linked to a psychological 'baseline': human beings have a predisposition for social cognition as the default mode of cognizing which is implemented in the robust pattern of intrinsic brain activity known as the "default system".


Available from: Simon B Eickhoff, Apr 19, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The therapeutic potential of meditation for physical and mental well-being is well documented, however the possibility of adverse effects warrants further discussion of the suitability of any particular meditation practice for every given participant. This concern highlights the need for a personalized approach in the meditation practice adjusted for a concrete individual. This can be done by using an objective screening procedure that detects the weak and strong cognitive skills in brain function, thus helping design a tailored meditation training protocol. Quantitative electroencephalogram (qEEG) is a suitable tool that allows identification of individual neurophysiological types. Using qEEG screening can aid developing a meditation training program that maximizes results and minimizes risk of potential negative effects. This brief theoretical-conceptual review provides a discussion of the problem and presents some illustrative results on the usage of qEEG screening for the guidance of mediation personalization. Copyright © 2015. Published by Elsevier Ltd.
    Journal of Physiology-Paris 03/2015; DOI:10.1016/j.jphysparis.2015.03.001 · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In using language, people not only exchange information, but also navigate their social world - for example, they can express themselves indirectly to avoid losing face. In this functional magnetic resonance imaging study, we investigated the neural correlates of interpreting face-saving indirect replies, in a situation where participants only overheard the replies as part of a conversation between two other people, as well as in a situation where the participants were directly addressed themselves. We created a fictional job interview context where indirect replies serve as a natural communicative strategy to attenuate one's shortcomings, and asked fMRI participants to either pose scripted questions and receive answers from three putative job candidates (addressee condition) or to listen to someone else interview the same candidates (overhearer condition). In both cases, the need to evaluate the candidate ensured that participants had an active interest in comprehending the replies. Relative to direct replies, face-saving indirect replies increased activation in medial prefrontal cortex, bilateral temporo-parietal junction (TPJ), bilateral inferior frontal gyrus and bilateral middle temporal gyrus, in active overhearers and active addressees alike, with similar effect size, and comparable to findings obtained in an earlier passive listening study (Bašnáková et al., 2013). In contrast, indirectness effects in bilateral anterior insula and pregenual ACC, two regions implicated in emotional salience and empathy, were reliably stronger in addressees than in active overhearers. Our findings indicate that understanding face-saving indirect language requires additional cognitive perspective-taking and other discourse-relevant cognitive processing, to a comparable extent in active overhearers and addressees. Furthermore, they indicate that face-saving indirect language draws upon affective systems more in addressees than in overhearers, presumably because the addressee is the one being managed by a face-saving reply. In all, face-saving indirectness provides a window on the cognitive as well as affect-related neural systems involved in human communication. Copyright © 2015. Published by Elsevier Ltd.
    Neuropsychologia 04/2015; DOI:10.1016/j.neuropsychologia.2015.03.030 · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Individuals with autism spectrum disorder (ASD) demonstrate difficulty with social interactions and relationships, but the neural mechanisms underlying these difficulties remain largely unknown. While social difficulties in ASD are most apparent in the context of interactions with other people, most neuroscience research investigating ASD have provided limited insight into the complex dynamics of these interactions. The development of novel, innovative "interactive social neuroscience" methods to study the brain in contexts with two interacting humans is a necessary advance for ASD research. Studies applying an interactive neuroscience approach to study two brains engaging with one another have revealed significant differences in neural processes during interaction compared to observation in brain regions that are implicated in the neuropathology of ASD. Interactive social neuroscience methods are crucial in clarifying the mechanisms underlying the social and communication deficits that characterize ASD.
    The Yale journal of biology and medicine 03/2015; 88(1):17-24.