Article

Distribution of the A3 subunit of the cyclic nucleotide-gated ion channels in the main olfactory bulb of the rat.

Departamento de Biología Celular, Unidad de Neurobiología, Facultad de Ciencias Biológicas, Universidad de Valencia, Street Dr. Moliner 50, Burjasot, Spain.
Neuroscience (Impact Factor: 3.12). 07/2008; 153(4):1164-76. DOI:10.1016/j.neuroscience.2008.03.012
Source: PubMed

ABSTRACT Previous data suggest that cyclic GMP (cGMP) signaling can play key roles in the circuitry of the olfactory bulb (OB). Therefore, the expression of cGMP-selective subunits of the cyclic nucleotide-gated ion channels (CNGs) can be expected in this brain region. In the present study, we demonstrate a widespread expression of the cGMP-selective A3 subunit of the cyclic nucleotide-gated ion channels (CNGA3) in the rat OB. CNGA3 appears in principal cells, including mitral cells and internal, medium and external tufted cells. Moreover, it appears in two populations of interneurons, including a subset of periglomerular cells and a group of deep short-axon cells. In addition to neurons, CNGA3-immunoreactivity is found in the ensheathing glia of the olfactory nerve. Finally, an abundant population of CNGA3-containing cells with fusiform morphology and radial processes is found in the inframitral layers. These cells express doublecortin and have a morphology similar to that of the undifferentiated cells that leave the rostral migratory stream and migrate radially through the layers of the OB. Altogether, our results suggest that CNGA3 can play important and different roles in the OB. Channels composed of this subunit can be involved in the processing of the olfactory information taking place in the bulbar circuitry. Moreover, they can be involved in the function of the ensheathing glia and in the radial migration of immature cells through the bulbar layers.

0 0
 · 
0 Bookmarks
 · 
63 Views
  • [show abstract] [hide abstract]
    ABSTRACT: The olfactory bulb (OB) of mammals is the brain region that receives the sensory information coming from the olfactory epithelium. The entrance of the olfactory information occurs in spherical structures of neuropil named olfactory glomeruli and is modulated by a population of interneurons known as periglomerular cells (PG). It has been demonstrated that there are two types of PG in the OB of some macrosmatic mammals, including rats and mice. Type 1 PG (PG-1) receive synapses from the olfactory nerve, whereas type 2 PG (PG-2) do not receive synapses from the olfactory axons. To date, the presence of the two types of PG has not been investigated in microsmatic mammals. In this context, we analyze the presence of PG-1 and PG-2 in the OB of the long-tailed macaque (Macaca fascicularis). For that, we used the enzyme tyrosine hydroxylase, the neuronal isoform of the enzyme nitric oxide synthase and the calcium-binding proteins calbindin D-28k and calretinin as neurochemical markers. Our results demonstrate that the OB of the macaque contains PG-1 and PG-2. A subpopulation of PG-1 expresses tyrosine hydroxylase and another expresses the neuronal isoform of nitric oxide synthase. In addition, a subpopulation of PG-2 expresses calbindin D-28k and another expresses calretinin. Double immunofluorescence demonstrates that there is no colocalization of two markers in the same PG. These results mimic those found in macrosmatic animals. The presence of two types of PG in the glomerular circuits seems to be a key principle for the organization of the OB of mammals.
    Brain Structure and Function 06/2012; · 7.84 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Cyclic nucleotide-gated (CNG) channels are nonselective cation channels activated by cyclic AMP (cAMP) or cyclic GMP (cGMP). They were originally identified in retinal and olfactory receptors, but evidence has also emerged for their expression in several mammalian brain areas. Because cGMP and cAMP control important aspects of glial cell physiology, we wondered whether CNG channels are expressed in astrocytes, the most functionally relevant glial cells in the CNS. Immunoblot and immunofluorescence experiments demonstrated expression of the CNG channel olfactory-type A subunit, CNGA2, in cultured rat cortical astrocytes. In patch-clamp experiments, currents elicited in these cells by voltage ramps from -100 to +100 mV in the presence of the cGMP analogue, dB-cGMP, were significantly reduced by the CNG channel blockers, L-cis-diltiazem (LCD) and Cd(2+) . The reversal potentials of the LCD- and Cd(2+) -sensitive currents were more positive than that of K(+) , as expected for a mixed cation current. Noninactivating, voltage-independent currents were also elicited by extracellular application of the membrane permeant cGMP analogue, 8-Br-cGMP. These effects were blocked by LCD and were mimicked by natriuretic peptide receptor activation and inhibition of phosphodiesterase activity. Voltage-independent, LCD-sensitive currents were also elicited by 8-Br-cGMP in astrocytes of hippocampal and neocortical brain slices. Immunohistochemistry confirmed a broad distribution of CNG channels in astrocytes of the rat forebrain, midbrain, and hindbrain. These findings suggest that CNG channels are downstream targets of cyclic nucleotides in astrocytes, and they may be involved in the glial-mediated regulation of CNS functions under physiological and pathological conditions.
    Glia 05/2012; 60(9):1391-405. · 5.07 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Although the major mode of transmission for serotonin in the brain is volume transmission, previous anatomical studies have demonstrated that serotonergic axons do form synaptic contacts. The olfactory glomeruli of the olfactory bulb of mammals receive a strong serotonergic innervation from the dorsal and medial raphe nuclei. In the present report, we investigate the synaptic connectivity of these serotonergic axons in the glomerular neuropil of the rat olfactory bulb. Our study shows that serotonergic axons form asymmetrical synaptic contacts on dendrites within the glomerular neuropil. Analyzing the neurochemical nature of the synaptic targets, we have found that 55% of the synapses were on GABA-immunopositive profiles and 45% on GABA-immunonegative profiles. These data indicate that barely half of the contacts were found in GABA-immunonegative profiles and half of the synapses in GABA-positive dendrites belonging to type 1 periglomerular cells. Synaptic contacts from serotonergic axons on dendrites of principal cells cannot be excluded, since some of the GABA-immunonegative postsynaptic profiles contacted by serotonergic axons had the typical ultrastructural features of bulbar principal cell dendrites. Altogether, our results suggest a complex action of the serotonergic system in the modulation of the bulbar circuitry.
    Neuroscience 08/2010; 169(2):770-80. · 3.12 Impact Factor