Article

Sodium late current blockers in ischemia reperfusion: is the bullet magic?

Cardiovascular 2 Division, Pierre Fabre Research Center, 17 Avenue Jean Moulin, 81106 Castres Cedex, France.
Journal of Medicinal Chemistry (Impact Factor: 5.61). 08/2008; 51(13):3856-66. DOI:10.1021/jm800100z
Source: PubMed

ABSTRACT We describe the discovery of the first selective, potent, and voltage-dependent inhibitor of the late current mediated by the cardiac sodium channel Na V1.5. The compound 3,4-dihydro- N-[(2 S)-3-[(2-methoxyphenyl)thio]-2-methylpropyl]-2 H-(3 R)-1,5-benzoxathiepin-3-amine, 2a (F 15845), was identified from a novel family of 3-amino-1,5-benzoxathiepine derivatives. The late sodium current inhibition and antiischemic effects of 2a were studied in various models in vitro and in vivo. In a rabbit model of ischemia-reperfusion, 2a exhibited more potent antiischemic effects than reference compounds KC 12291, ranolazine, and ivabradine. Thus, after a single administration, 2a almost abolished ST segment elevation in response to a transient coronary occlusion. Further, the antiischemic activity of 2a is maintained over a wide range of doses and is not associated with any hemodynamic changes, contrary to conventional antiischemic agents. The unique pharmacological profile of 2a opens new and promising opportunities for the treatment of ischemic heart diseases.

0 0
 · 
0 Bookmarks
 · 
37 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Blockade of voltage-gated sodium channels (VGSCs) has been used successfully in the clinic to enable control of pathological firing patterns that occur in conditions as diverse as chronic pain, epilepsy, and arrhythmias. Herein we review the state of the art in marketed sodium channel inhibitors, including a brief compendium of their binding sites and of the cellular and molecular biology of sodium channels. Despite the preferential action of this drug class toward over-excited cells, which significantly limits potential undesired side effects on other cells, the need to develop a second generation of sodium channel inhibitors to overcome their critical clinical shortcomings is apparent. Current approaches in drug discovery to deliver novel and truly innovative sodium channel inhibitors is next presented by surveying the most recent medicinal chemistry breakthroughs in the field of small molecules and developments in automated patch-clamp platforms. Various strategies aimed at identifying small molecules that target either particular isoforms of sodium channels involved in specific diseases or anomalous sodium channel currents, irrespective of the isoform by which they have been generated, are critically discussed and revised.
    ChemMedChem 09/2012; 7(10):1712-40. · 2.84 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A pathological increase in the late component of the cardiac Na(+) current, I(NaL), has been linked to disease manifestation in inherited and acquired cardiac diseases including the long QT variant 3 (LQT3) syndrome and heart failure. Disruption in I(NaL) leads to action potential prolongation, disruption of normal cellular repolarization, development of arrhythmia triggers, and propensity to ventricular arrhythmia. Attempts to treat arrhythmogenic sequelae from inherited and acquired syndromes pharmacologically with common Na(+) channel blockers (e.g. flecainide, lidocaine, and amiodarone) have been largely unsuccessful. This is due to drug toxicity and the failure of most current drugs to discriminate between the peak current component, chiefly responsible for single cell excitability and propagation in coupled tissue, and the late component (I(NaL)) of the Na(+) current. Although small in magnitude as compared to the peak Na(+) current (~1-3%), I(NaL) alters action potential properties and increases Na(+) loading in cardiac cells. With the increasing recognition that multiple cardiac pathological conditions share phenotypic manifestations of I(NaL) upregulation, there has been renewed interest in specific pharmacological inhibition of I(Na). The novel antianginal agent ranolazine, which shows a marked selectivity for late versus peak Na(+) current, may represent a novel drug archetype for targeted reduction of I(NaL). This article aims to review common pathophysiological mechanisms leading to enhanced I(NaL) in LQT3 and heart failure as prototypical disease conditions. Also reviewed are promising therapeutic strategies tailored to alter the molecular mechanisms underlying I(Na) mediated arrhythmia triggers.
    Journal of Molecular and Cellular Cardiology 12/2011; 52(3):608-19. · 5.15 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: This review presents the roles of cardiac sodium channel NaV1.5 late current (late INa) in generation of arrhythmic activity. The assumption of the authors is that proper Na(+) channel function is necessary to maintenance of the transmembrane electrochemical gradient of Na(+) and regulation of cardiac electrical activity. Myocyte Na(+) channels openings during the brief action potential upstroke contribute to peak INa and initiate excitation-contraction coupling. Openings of Na(+) channels outside the upstroke contribute to late INa, a depolarizing current that persists throughout the action potential plateau. The small, physiological late INa does not appear to be critical for normal electrical or contractile function in the heart. Late INa does, however, reduce the net repolarizing current, prolongs action potential duration, and increases cellular Na(+) loading. An increase of late INa, due to acquired conditions (e.g., heart failure) or inherited Na(+) channelopathies facilitates the formation of early and delayed afterpolarizations and triggered arrhythmias, spontaneous diastolic depolarization, and cellular Ca(2+) loading. These in turn increase the spatial and temporal dispersion of repolarization time and may lead to reentrant arrhythmias.
    Cardiovascular research 06/2013; · 5.80 Impact Factor

Bruno Le Grand