Article

Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage.

Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr Bohr Gasse 3, 1030 Vienna, Austria.
Nature (Impact Factor: 42.35). 08/2008; 454(7201):241-5. DOI: 10.1038/nature07014
Source: PubMed

ABSTRACT Drosophila neuroblasts and ovarian stem cells are well characterized models for stem cell biology. In both cell types, one daughter cell self-renews continuously while the other undergoes a limited number of divisions, stops to proliferate mitotically and differentiates. Whereas neuroblasts segregate the Trim-NHL (tripartite motif and Ncl-1, HT2A and Lin-41 domain)-containing protein Brain tumour (Brat) into one of the two daughter cells, ovarian stem cells are regulated by an extracellular signal from the surrounding stem cell niche. After division, one daughter cell looses niche contact. It undergoes 4 transit-amplifying divisions to form a cyst of 16 interconnected cells that reduce their rate of growth and stop to proliferate mitotically. Here we show that the Trim-NHL protein Mei-P26 (refs 7, 8) restricts growth and proliferation in the ovarian stem cell lineage. Mei-P26 expression is low in stem cells but is strongly induced in 16-cell cysts. In mei-P26 mutants, transit-amplifying cells are larger and proliferate indefinitely leading to the formation of an ovarian tumour. Like brat, mei-P26 regulates nucleolar size and can induce differentiation in Drosophila neuroblasts, suggesting that these genes act through the same pathway. We identify Argonaute-1, a component of the RISC complex, as a common binding partner of Brat and Mei-P26, and show that Mei-P26 acts by inhibiting the microRNA pathway. Mei-P26 and Brat have a similar domain composition that is also found in other tumour suppressors and might be a defining property of a new family of microRNA regulators that act specifically in stem cell lineages.

2 Bookmarks
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are short non-coding RNAs that play an important role in the regulation of gene expression. Hence, microRNAs are considered as potential targets for engineering of Chinese hamster ovary (CHO) cells to improve recombinant protein production. Here, we analyzed and compared the microRNA expression patterns of high, low, and non-producing recombinant CHO cell lines expressing two structurally different model proteins in order to identify microRNAs that are involved in heterologous protein synthesis and secretion and thus might be promising targets for cell engineering to increase productivity. To generate reproducible and comparable data, the cells were cultivated in a bioreactor under steady-state conditions. Global microRNA expression analysis showed that mature microRNAs were predominantly upregulated in the producing cell lines compared to the non-producer. Several microRNAs were significantly differentially expressed between high and low producers, but none of them commonly for both model proteins. The identification of target messenger RNAs (mRNAs) is essential to understand the biological function of microRNAs. Therefore, we negatively correlated microRNA and global mRNA expression data and combined them with computationally predicted and experimentally validated targets. However, statistical analysis of the identified microRNA-mRNA interactions indicated a considerable false positive rate. Our results and the comparison to published data suggest that the reaction of CHO cells to the heterologous protein expression is strongly product- and/or clone-specific. In addition, this study highlights the urgent need for reliable CHO-specific microRNA target prediction tools and experimentally validated target databases in order to facilitate functional analysis of high-throughput microRNA expression data in CHO cells.
    Applied Microbiology and Biotechnology 07/2014; · 3.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms controlling cell fate determination and reprogramming are fundamental for development. A profound reprogramming, allowing the production of pluripotent cells in early embryos, takes place during the oocyte-to-embryo transition. To understand how the oocyte reprogramming potential is controlled, we sought Caenorhabditis elegans mutants in which embryonic transcription is initiated precociously in germ cells. This screen identified LIN-41, a TRIM-NHL protein and a component of the somatic heterochronic pathway, as a temporal regulator of pluripotency in the germline. We found that LIN-41 is expressed in the cytoplasm of developing oocytes, which, in lin-41 mutants, acquire pluripotent characteristics of embryonic cells and form teratomas. To understand LIN-41 function in the germline, we conducted structure-function studies. In contrast to other TRIM-NHL proteins, we found that LIN-41 is unlikely to function as an E3 ubiquitin ligase. Similar to other TRIM-NHL proteins, the somatic function of LIN-41 is thought to involve mRNA regulation. Surprisingly, we found that mutations predicted to disrupt the association of LIN-41 with mRNA, which otherwise compromise LIN-41 function in the heterochronic pathway in the soma, have only minor effects in the germline. Similarly, LIN-41-mediated repression of a key somatic mRNA target is dispensable for the germline function. Thus, LIN-41 appears to function in the germline and the soma via different molecular mechanisms. These studies provide the first insight into the mechanism inhibiting the onset of embryonic differentiation in developing oocytes, which is required to ensure a successful transition between generations.
    PLoS Genetics 08/2014; 10(8):e1004533. · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The morphology and the connectivity of neuronal structures formed during early development must be actively maintained as the brain matures. Although impaired axon stability is associated with the progression of various neurological diseases, relatively little is known about the factors controlling this process. We identified Brain tumor (Brat), a conserved member of the TRIM-NHL family of proteins, as a new regulator of axon maintenance in Drosophila CNS. Brat function is dispensable for the initial growth of Mushroom Body axons, but is required for the stabilization of axon bundles. We found that Brat represses the translation of src64B, an upstream regulator of a conserved Rho-dependent pathway previously shown to promote axon retraction. Furthermore, brat phenotypes are phenocopied by src64B overexpression, and partially suppressed by reducing the levels of src64B or components of the Rho pathway, suggesting that brat promotes axon maintenance by downregulating the levels of Src64B. Finally, Brat regulates brain connectivity via its NHL domain, but independently of its previously described partners Nanos, Pumilio, and d4EHP. Thus, our results uncover a novel post-transcriptional regulatory mechanism that controls the maintenance of neuronal architecture by tuning the levels of a conserved rho-dependent signaling pathway.
    The Journal of neuroscience : the official journal of the Society for Neuroscience. 10/2014; 34(41):13855-64.

Full-text (2 Sources)

Download
53 Downloads
Available from
Jun 4, 2014