Article

Effective connectivity profile: A structural representation that evidences the relationship between protein structures and sequences

Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain.
Proteins Structure Function and Bioinformatics (Impact Factor: 2.92). 12/2008; 73(4):872-88. DOI: 10.1002/prot.22113
Source: PubMed

ABSTRACT The complexity of protein structures calls for simplified representations of their topology. The simplest possible mathematical description of a protein structure is a one-dimensional profile representing, for instance, buriedness or secondary structure. This kind of representation has been introduced for studying the sequence to structure relationship, with applications to fold recognition. Here we define the effective connectivity profile (EC), a network theoretical profile that self-consistently represents the network structure of the protein contact matrix. The EC profile makes mathematically explicit the relationship between protein structure and protein sequence, because it allows predicting the average hydrophobicity profile (HP) and the distributions of amino acids at each site for families of homologous proteins sharing the same structure. In this sense, the EC provides an analytic solution to the statistical inverse folding problem, which consists in finding the statistical properties of the set of sequences compatible with a given structure. We tested these predictions with simulations of the structurally constrained neutral (SCN) model of protein evolution with structure conservation, for single- and multi-domain proteins, and for a wide range of mutation processes, the latter producing sequences with very different hydrophobicity profiles, finding that the EC-based predictions are accurate even when only one sequence of the family is known. The EC profile is very significantly correlated with the HP for sequence-structure pairs in the PDB as well. The EC profile generalizes the properties of previously introduced structural profiles to modular proteins such as multidomain chains, and its correlation with the sequence profile is substantially improved with respect to the previously defined profiles, particularly for long proteins. Furthermore, the EC profile has a dynamic interpretation, since the EC components are strongly inversely related with the temperature factors measured in X-ray experiments, meaning that positions with large EC component are more strongly constrained in their equilibrium dynamics. Last, the EC profile allows to define a natural measure of modularity that correlates with the number of domains composing the protein, suggesting its application for domain decomposition. Finally, we show that structurally similar proteins have similar EC profiles, so that the similarity between aligned EC profiles can be used as a structure similarity measure, a property that we have recently applied for protein structure alignment. The code for computing the EC profile is available upon request writing to ubastolla@cbm.uam.es, and the structural profiles discussed in this article can be downloaded from the SLOTH webserver http://www.fkp.tu-darmstadt.de/SLOTH/.

1 Follower
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper builds upon the fundamental paper by \citet{niwa2009} that provides the unique possibility to analyze the relative aggregation/folding propensity of the elements of the entire Escherichia coli (E. coli) proteome in a cell-free standardized microenvironment. The hardness of the problem comes from the superposition between the driving forces of intra- and inter-molecule interactions and it is mirrored by the evidences of shift from folding to aggregation phenotypes by single-point mutations \cite{doi:10.1021/ja1116233}. Here in this paper we apply different state-of-the-art classification methods coming from the field of structural pattern recognition, with the aim to compare different representations of the same proteins of the Niwa et al. data base, going from pure sequence to chemico-physical labeled (contact) graphs. By this comparison, we are able to identify some interesting general properties of protein universe, going from the confirming of a threshold size around 250 residues (discriminating "easily foldable" from "difficultly foldable" molecules consistent with other independent data on protein domains architecture) to the relevance of contact graphs eigenvalue ordering for folding behavior discrimination and characterization of the E. coli data. The soundness of the experimental results presented in this paper is proved by the statistically relevant relationships discovered among the chemico-physical description of proteins and the developed cost matrix of substitution used in the various discrimination systems.
  • Source
    International Conference on Bioinformatics & Computational Biology, BIOCOMP 2010, July 12-15, 2010, Las Vegas Nevada, USA, 2 Volumes; 01/2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ces dernières années, plusieurs modèles d'évolution moléculaire, basés sur l'hypothèse que les séquences des protéines évoluent sous la contrainte d'une structure bien dénie et constante au cours de l'évolution, ont été développés. Cependant, un tel modèle repose sur l'expression de la fonction repr ésentant le lien entre la structure et sa séquence. Les potentiels statistiques proposent une solution intéressante, mais parmi l'ensemble des potentiels statistiques existants, lequel serait le plus approprié pour ces modèles d'évolution ? Dans cette thèse est développé un cadre probabiliste d'optimisation de potentiels statistiques, dans le contexte du maximum de vraisemblance, et dans une optique de protein design. Le potentiel statistique utilisé ici est composé d'un terme de contact entre deux acides aminés et un terme d'accessibilité au solvant, mais le cadre statistique peut être très facilement généralisé à des formes plus complexes de potentiel. Ce cadre intègre diérentes méthodes d'optimisation, incluant la prise en compte de structures alternatives (decoys) pour l'optimisation des potentiels, et utilise une amélioration algorithmique permettant l'obtention rapide de potentiels statistiques adaptés au contexte. Tout cela nous fournit un cadre robuste et des tests statistiques (à la fois dans le contexte de l'optimisation des potentiels et dans le contexte de l'évolution moléculaire), permettant de comparer diérentes méthodes d'optimisation de potentiels statistiques pour les modèles soumis à des contraintes structurales.