Cellular proteins in influenza virus particles.

Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America.
PLoS Pathogens (Impact Factor: 8.14). 07/2008; 4(6):e1000085. DOI: 10.1371/journal.ppat.1000085
Source: PubMed

ABSTRACT Virions are thought to contain all the essential proteins that govern virus egress from the host cell and initiation of replication in the target cell. It has been known for some time that influenza virions contain nine viral proteins; however, analyses of other enveloped viruses have revealed that proteins from the host cell can also be detected in virions. To address whether the same is true for influenza virus, we used two complementary mass spectrometry approaches to perform a comprehensive proteomic analysis of purified influenza virus particles. In addition to the aforementioned nine virus-encoded proteins, we detected the presence of 36 host-encoded proteins. These include both cytoplasmic and membrane-bound proteins that can be grouped into several functional categories, such as cytoskeletal proteins, annexins, glycolytic enzymes, and tetraspanins. Interestingly, a significant number of these have also been reported to be present in virions of other virus families. Protease treatment of virions combined with immunoblot analysis was used to verify the presence of the cellular protein and also to determine whether it is located in the core of the influenza virus particle. Immunogold labeling confirmed the presence of membrane-bound host proteins on the influenza virus envelope. The identification of cellular constituents of influenza virions has important implications for understanding the interactions of influenza virus with its host and brings us a step closer to defining the cellular requirements for influenza virus replication. While not all of the host proteins are necessarily incorporated specifically, those that are and are found to have an essential role represent novel targets for antiviral drugs and for attenuation of viruses for vaccine purposes.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The detection and evaluation of concentration of influenza virus proteins in biological samples is critical in a broad range of medical and biological investigations regarding the concern over potential outbreaks of virulent influenza strains in animals and humans. This paper describes a sensitive, label-free approach for the detection of a virulence factor PB1-F2. PB1-F2 is a small, 90 amino acid long polypeptide expressed in influenza A viruses, which generally exacerbate virus pathogenicity. The developed immunosensoris based on a non-the-chipcovalently immobilized specific monoclonal anti-PB1-F2 antibody and a SPR technology. The immunosensor was calibrated using purified full length PB1-F2 protein. Itdetected PB1-F2 with the linear range extended from 10 to 500 nM, repeatability of 5% for 500 nM PB1-F2 and showed saturationof protein concentrations higher than 1 μM. The sensor can quantify PB1-F2 in its monomeric form but not when its oligomerization was induced by preincubation in 0.05% SDS. The immunosensor was successfully applied in the detection and quantification of PB1-F2 in infected mouse lungs and cell lines, providing temporal expression profiles of PB1-F2 during viral infection. In lungs of infected mice, the influenza virus structural nucleoprotein NP was detected in parallel using a specific anti-NP antibody. This parallel detection of PB1-F2 and NP suggests that applied sensor chip technology may be amenable to an arrow immunosensor for simultaneous detection of all known influenza virus proteins in infected tissues and cells.
    Journal of analytical and bioanalytical techniques. 01/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells can take up exogenous tumor antigens and present their antigenic epitopes to CD8(+) T cells (TCD8+), a process called cross-presentation. Cross-presentation is especially important in antitumor immunity because tumor cells, although carrying tumor antigens, do not activate naive T cells efficiently because of a lack of co-stimulatory molecules. Our group has recently shown that influenza A virus (IAV) infection of allogeneic cells lead to enhanced cross-priming of TCD8+ specific to cellular antigens. To develop this into a potential vaccine strategy, in this study, we have systematically investigated the numbers of allogeneic cells infected by IAV, IAV doses and their infectious activity, the length of in vitro infection and other associated factors. We have defined the optimal immune-enhancing conditions and we have also shown in vivo that such enhanced cross-priming did lead to enhanced tumor protection. The knowledge should be useful for developing more robust cancer vaccine.Immunology and Cell Biology advance online publication, 10 September 2013; doi:10.1038/icb.2013.46.
    Immunology and Cell Biology 09/2013; · 3.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main vector of dengue in America is the mosquito Aedes aegypti, which is infected by dengue virus (DENV) through receptors of midgut epithelial cells. The envelope protein (E) of dengue virus binds to receptors present on the host cells through its domain III that has been primarily recognized to bind cell receptors. In order to identify potential receptors, proteins from mosquito midgut tissue and C6/36 cells were purified by affinity using columns with the recombinant E protein domain III (rE-DIII) or DENV particles bound covalently to Sepharose 4B to compare and evaluate their performance to bind proteins including putative receptors from female mosquitoes of Ae. aegypti. To determine their identity mass spectrometric analysis of purified proteins separated by polyacrylamide gel electrophoresis was performed. Our results indicate that both viral particles and rE-DIII bound proteins with the same apparent molecular weights of 57 and 67 kDa. In addition, viral particles bound high molecular weight proteins. Purified proteins identified were enolase, beta-adrenergic receptor kinase (beta-ARK), translation elongation factor EF-1 alpha/Tu, and cadherin.
    BioMed research international. 01/2013; 2013:875958.

Full-text (3 Sources)

Available from
May 30, 2014