Suicide and depression in the quantitative analysis of glutamic acid decarboxylase-Immunoreactive neuropil

Institute of Forensic Medicine, Medical University of Gdańsk, Poland.
Journal of Affective Disorders (Impact Factor: 3.71). 07/2008; 113(1-2):45-55. DOI: 10.1016/j.jad.2008.04.021
Source: PubMed

ABSTRACT Alterations of GABAergic neurotransmission are assumed to play a crucial role in the pathophysiology of mood disorders. Glutamic acid decarboxylase (GAD) is the key enzyme of GABA synthesis.
Immunohistochemical staining of GAD 65/67 was performed in the orbitofrontal, anterior cingulate and dorsolateral prefrontal cortex (DLC), the entorhinal cortex (EC), the hippocampal formation, and the medial dorsal and lateral dorsal thalamic nuclei, with consecutive determination of GAD-immunoreactive (-ir) neuropil relative density. The study was performed on paraffin-embedded brains from 21 depressed patients (14 of whom had committed suicide) and 18 matched controls. The data were tested using Kruskal-Wallis, Mann-Whitney (U) and Spearman statistical procedures.
As shown by post-hoc U-tests, an increase in the relative density of GAD-ir neuropil was present in the hippocampal formation, specific for suicidal patients. The EC was the only area where non-suicidal patients also revealed an increase compared with controls. On the contrary, the DLC was the only area where a significant decrease existed, specific for non-suicidal patients. Numerous negative correlations were found between the investigated parameter and psychotropic medication.
A major limitation of this study is the relatively small case number. A further limitation is given by the lack of data on drug exposure across the whole life span. The possible impact of unipolar-bipolar dichotomy of mood disorders on the obtained results should also be considered.
The study, revealing predominantly an increased relative density of GAD-ir neuropil, suggests the diathesis of GABAergic system specific for depressed suicidal patients.

  • Source
    • "Therefore, it is likely that reduced GAD-67 immunoreactivity in the dorsolateral PFC is due to a reduction in the density and size of calbindin-positive somata of GABAergic interneurons. Other postmortem studies investigating GAD in depression found reductions in GAD-65/67 immunopositive structures in the dorsolateral PFC (Gos et al., 2008) and in GAD protein level in the cerebellum (Fatemi et al., 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence suggests dysfunction of the gamma-aminobutyric acid (GABA) system in major depressive disorder (MDD). Neuroimaging studies consistently report reductions of cortical GABA in depressed patients. Our post-mortem analyses demonstrate a reduction in the density and size of GABAergic interneurons in the dorsolateral prefrontal cortex (DLPFC) in MDD. The goal of this study was to test whether the level of glutamic acid decarboxylase (GAD), the GABA synthesizing enzyme, will also be reduced in the same cortical region in MDD. Levels of GAD-65 and GAD-67 proteins were investigated by Western blotting in samples from the DLPFC (BA 9) in 13 medication-free subjects with MDD, and 13 psychiatrically healthy controls. The overall amount of GAD-67 was significantly reduced (-34%) in depressed subjects compared to matched controls. Since recent neuroimaging studies have demonstrated that antidepressants modulate GABA levels, additional experiments were performed to examine the levels of GAD in eight depressed subjects treated with antidepressant medications. Levels of GAD-67 were unchanged in these depressed subjects compared to their respective controls (n=8). The overall amounts of GAD-65 were similar in depressed subjects compared to matched controls, regardless of antidepressant medication. Reduced levels of GAD-67, which is localized to somata of GABA neurons, further support our observation of a decreased density of GABAergic neurons in the PFC in depression. It is likely that a decrease in GAD-67 accounts for the reduction in GABA levels revealed by neuroimaging studies. Moreover, our data support previous neuroimaging observations that antidepressant medication normalizes GABA deficits in depression.
    The International Journal of Neuropsychopharmacology 09/2009; 13(4):411-20. DOI:10.1017/S1461145709990587 · 5.26 Impact Factor
  • Source
    • "in the GABAergic system might be associated with various pathological conditions including epilepsy, Parkinson's disease, Alzheimer's disease and mental illness (Kalueff and Nutt, 2007). In particular, increasing evidence suggests the possible involvement of GABA in the neuro - biology of mood disorder and the mechanisms of antidepressant action ( Gos et al . , 2009 ; Jinno and Kosaka , 2009 ; Sanacora and Saricicek , 2007 ) . It has been well established that the formation and recall of sensory , motor and cognitive representations require coordinated communication among multiple areas of the cerebral cortex , which"
    [Show abstract] [Hide abstract]
    ABSTRACT: GABA is a key mediator of neural activity in the mammalian central nervous system, and a diverse set of GABAergic neurons utilize GABA as a transmitter. It has been widely accepted that GABAergic neurons typically serve as interneurons while glutamatergic principal cells send excitatory signals to remote areas. In general, glutamatergic projection neurons monosynaptically innervate both principal cells and local GABAergic interneurons in each target area, and these GABAergic cells play a vital role in modulation of the activity of principal cells. The formation and recall of sensory, motor and cognitive representations require coordinated fast communication among multiple areas of the cerebral cortex, which are thought to be mostly mediated by glutamatergic neurons. However, there is an increasing body of evidence showing that specific subpopulations of cortical GABAergic neurons send long-range axonal projections to subcortical and other cortical areas. In particular, a variety of GABAergic neurons in the hippocampus project to neighboring and remote areas. Using anatomical, molecular and electrophysiological approaches, several types of GABAergic projection neurons have been shown to exist in the hippocampus. The target areas of these cells are the subiculum and other retrohippocampal areas, the medial septum and the contralateral dentate gyrus. The long-range GABAergic projection system of the hippocampus may serve to coordinate precisely the multiple activity patterns of widespread cortical cell assemblies in different brain states and among multiple functionally related areas.
    Frontiers in Neuroanatomy 02/2009; 3:13. DOI:10.3389/neuro.05.013.2009 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Suicide and bipolar disorder (BD) are challenging, complex, and intertwined areas of study in contemporary psychiatry. Indeed, BD is associated with the highest lifetime risk for suicide attempt and completion of all the psychiatric conditions. Given that several clinical risk factors for both suicide and BD have been well noted in the literature, exploring the neurobiological aspects of suicide in BD may provide insights into both preventive measures and future novel treatments. This review synthesizes findings regarding the neurobiological aspects of suicide and, when applicable, their link to BD. Neurochemical findings, genes/epigenetics, and potential molecular targets for current or future treatments are discussed. The role of endophenotypes and related proximal and distal risk factors underlying suicidal behavior are also explored. Lastly, we discuss the manner in which preclinical work on aggression and impulsivity may provide additional insights for the future development of novel treatments.
    06/2013; 4(2). DOI:10.2478/s13380-013-0120-7
Show more