High genetic variability in non-aflatoxigenic A. flavus strains by using Quadruplex PCR-based assay.

Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Italy.
International Journal of Food Microbiology (Impact Factor: 3.43). 06/2008; 125(3):341-3. DOI: 10.1016/j.ijfoodmicro.2008.04.020
Source: PubMed

ABSTRACT Aflatoxigenic Aspergillus flavus isolates always show, by using a multiplex PCR-system, four DNA fragments specific for aflR, nor-1, ver-1, and omt-A genes. Non-aflatoxigenic A. flavus strains give variable DNA banding pattern lacking one, two, three or four of these genes. Recently, it has been found and reported that some aflatoxin non-producing A. flavus strains show a complete set of genes. Because less is known about the incidence of structural genes aflR, nor-1, ver-1 and omt-A in aflatoxin non-producing strains of A. flavus, we decided to study the frequencies of the aflatoxin structural genes in non-aflatoxigenic A. flavus strains isolated from food and feed commodities. The results can be summarized as following: 36.5% of the examined non-aflatoxigenic A. flavus strains showed DNA fragments that correspond to the complete set of genes (quadruplet pattern) as found in aflatoxigenic A. flavus. Forty three strains (32%) showed three DNA banding patterns grouped in four profiles where nor-1, ver-1 and omt-A was the most frequent profile. Twenty five (18.7%) of non-aflatoxigenic A. flavus strains yielded two DNA banding pattern whereas sixteen (12%) of the strains showed one DNA banding pattern. In one strain, isolated from poultry feed, no DNA bands were found. The nor-1 gene was the most representative between the four aflatoxin structural assayed genes. Lower incidence was found for aflR gene. Our data show a high level of genetic variability among non-aflatoxigenic A. flavus isolates that require greater attention in order to design molecular experiment to distinguish true aflatoxigenic from non-aflatoxigenic A. flavus strains.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A few starters have been developed and used for doenjang fermentation but often without safety evaluation. Filamentous fungi were isolated from industrial doenjang koji, and their potential for mycotoxin production was evaluated. Two fungi were isolated; one was more dominantly present (90%). Both of greenish (SNU-G) and whitish (SNU-W) fungi showed 97% and 95% internal transcribed spacer (ITS) sequence identities to Aspergillus oryzae/flavus, respectively. However, the SmaI digestion pattern of genomic DNA suggested that both belong to A. oryzae. Moreover, both fungi had morphological characteristics similar to that of A. oryzae. SNU-G and SNU-W did not form sclerotia, which is a typical characteristic of A. oryzae. Therefore, both fungi were identified to be A. oryzae. In aflatoxin (AF) gene cluster analysis, both fungi had norB/cypA genes similar to that of A. oryzae. Consistent with this, aflatoxins were not detected in SNU-G and SNU-W using ammonia vapor, TLC, and HPLC analyses. Both fungi seemed to have a whole cyclopiazonic acid (CPA) gene cluster based on PCR of maoA, dmaT, and pks/nrps genes, which are key genes for CPA biosynthesis. However, CPA was not detected in TLC and HPLC analyses. Therefore, both fungi seem to be safe to use as doenjang koji starters and may be suitable fungal candidates for further development of starters for traditional doenjang fermentation.
    Journal of microbiology and biotechnology. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the Aspergillus section Nigri, also known as black aspergilli, are responsible for the ochratoxin A (OTA) and fumonisins contamination of wine. The presence of black aspergilli in vineyards has been investigated extensively in warm climates, in which the incidence of these aspergilli on grapes and levels of OTA contamination of wines are commonly high. However, a detailed description of black aspergilli populations is needed in wine-producing cool regions to establish a baseline in view of the strengthening of temperature increase and in case of summer rainfall decrease. With this in mind, we isolated and characterized black aspergilli from grapes grown in an alpine region in Northern Italy (Trentino) during a 3-year sampling. Black aspergilli were isolated from around 10 % of the grape berries and most of the isolates were classified as A. niger, A. tubingensis and A. uvarum. A. carbonarius was isolated only once. OTA production was detected only in the A. carbonarius isolate and in one A. niger. Most of A. niger isolates were able to produce fumonisins. The presence of mycotoxins biosynthesis genes was assessed in A. niger isolates. An15g07920, a polyketide synthase (PKS) gene involved in OTA biosynthesis, was detected by PCR only in the single ochratoxigenic isolate. This strong correlation was not observed for anfum1, anfum6 and anfum8, three genes included in the A. niger fumonisin biosynthesis gene cluster, which were detected in different A. niger isolates not able to produce fumonisins. Projections of mean daily temperatures and monthly rainfall indicate that the presence of black aspergilli on grapes grown in vineyards of these valleys will probably increase in the future.
    European Journal of Plant Pathology 11/2012; 134(3). · 1.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aflatoxins and the producing fungi Aspergillus section Flavi are widely known as the most serious and dangerous mycotoxin issue in agricultural products. In Europe, before the outbreak of aflatoxins on maize (2003-2004) due to new climatic conditions, their contamination was confined to imported foods. Little information is available on molecular biodiversity and population structure of Aspergillus section Flavi in Europe. Preliminary reports evidenced the massive presence of Aspergillus flavus L -morphotype as the predominant species in maize field, no evidence of the highly toxigenic S-morphotype and of other aflatoxigenic species are reported. The risk of a shift in traditional occurrence areas for aflatoxins is expected in the world and in particular in South East of Europe due to the increasing average temperatures. Biological control of aflatoxin risk in the field by atoxigenic strains of A. flavus starts to be widely used in Africa and USA. Studies are necessary on the variation of aflatoxin production in populations of A. flavus to characterize stable atoxigenic A. flavus strains. The aim of present article is to give an overview on biodiversity and genetic variation of Aspergillus section Flavi in Europe in relation to the management of aflatoxins risk in the field.
    Frontiers in microbiology. 01/2014; 5:377.

Full-text (2 Sources)

Available from
May 27, 2014