Measuring team performance in healthcare: Review of research and implications for patient safety

Centre for Research Excellence in Patient Safety, Monash University, Australia. <>
Journal of Critical Care (Impact Factor: 2.19). 07/2008; 23(2):188-96. DOI: 10.1016/j.jcrc.2007.12.005
Source: PubMed

ABSTRACT Effective team performance is important to measure in order to determine how clinicians should be trained for safe and effective patient care. Team performance is challenging to measure. In this paper, we describe different methodologies used to capture team performance metrics including clinical surveys, direct observation, and video-based analyses of real-life clinical performance. Despite much effort, the instruments reported thus far suffer from a variety of shortcomings that prevent their wide application in assessing team behaviors and performance. A consensus is needed on a conceptual model of clinical team performance that can encompass many real and simulated healthcare settings and account for interdependencies of their outcome criteria.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    The International Journal of Human Resource Management 06/2012; DOI:10.1080/09585192.2012.654807 · 0.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physiologic data display is essential to decision making in critical care. Current displays echo first-generation hemodynamic monitors dating to the 1970s and have not kept pace with new insights into physiology or the needs of clinicians who must make progressively more complex decisions about their patients. The effectiveness of any redesign must be tested before deployment. Tools that compare current displays with novel presentations of processed physiologic data are required. Regenerating conventional physiologic displays from archived physiologic data is an essential first step. The purposes of the study were to (1) describe the SSSI (single sensor single indicator) paradigm that is currently used for physiologic signal displays, (2) identify and discuss possible extensions and enhancements of the SSSI paradigm, and (3) develop a general approach and a software prototype to construct such "extended SSSI displays" from raw data. We present Multi Wave Animator (MWA) framework--a set of open source MATLAB (MathWorks, Inc., Natick, MA, USA) scripts aimed to create dynamic visualizations (eg, video files in AVI format) of patient vital signs recorded from bedside (intensive care unit or operating room) monitors. Multi Wave Animator creates animations in which vital signs are displayed to mimic their appearance on current bedside monitors. The source code of MWA is freely available online together with a detailed tutorial and sample data sets.
    Journal of critical care 02/2011; 26(1):105.e1-9. DOI:10.1016/j.jcrc.2010.06.013 · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deux thématiques importantes des technologies de la santé: la pratique médicale fondée sur des preuves probantes et l’évaluation des interventions en médecine sont fondées sur une approche positiviste et une conception mécaniste des organisations en santé. Dans ce mémoire, nous soulevons l’hypothèse selon laquelle les théories de la complexité et la systémique permettent une conceptualisation différente de ces deux aspects de la gouvernance clinique d’une unité de Soins Intensifs Chirurgicaux (SIC), qui est considérée comme un système adaptatif dynamique non linéaire qui nécessite une approche systémique de la cognition. L’étude de cas d’une unité de SIC, permet de démontrer par de nombreux exemples et des analyses de micro-situations, toutes les caractéristiques de la complexité des patients critiques et instables et de la structure organisationnelle des SIC. Après une critique épistémologique de l’Evidence-Based Medicine nous proposons une pratique fondée sur des raisonnements cliniques alliant l’abduction, l’herméneutique et la systémique aux SIC. En nous inspirant des travaux de Karl Weick, nous suggérons aussi de repenser l’évaluation des modes d’interventions cliniques en s’inspirant de la notion d’organisation de haute fiabilité pour mettre en place les conditions nécessaires à l’amélioration des pratiques aux SIC. In Health Technology Assessment and Management, Evidence-Based Medicine and many tools available for clinical assessment reflect a positivistic and mechanistic approach to Health Care Organizations and scientific knowledge. We argue that the Complexity Theories and the Systemic decision-making process give a different insight on those two aspects of Clinical Governance in a Surgical Intensive Care Unit (SICU). In a case-study, we describe the nature of critically ill and unstable patients and the organizational structure of a SICU in a university based hospital. We demonstrate all the characteristics of complexity in that setting, through the use of many examples and micro-situational analysis. After an epistemological critical appraisal of EBM, we suggest that if a SICU is conceptualized as a dynamic non-linear adaptative system, then clinical knowledge and scientific thought processes must include hermeneutical, systemic and abductive types of reasoning. Finally, we draw upon Karl Weick’s work and suggest that a SICU must be considered as a High Reliability Organization in order to aim for improving patient care and create better conditions for quality and performance in this complex environment.