CHIP promotes Runx2 degradation and negatively regulates osteoblast differentiation

Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China.
The Journal of Cell Biology (Impact Factor: 9.69). 07/2008; 181(6):959-72. DOI: 10.1083/jcb.200711044
Source: PubMed

ABSTRACT Runx2, an essential transactivator for osteoblast differentiation, is tightly regulated at both the transcriptional and posttranslational levels. In this paper, we report that CHIP (C terminus of Hsc70-interacting protein)/STUB1 regulates Runx2 protein stability via a ubiquitination-degradation mechanism. CHIP interacts with Runx2 in vitro and in vivo. In the presence of increased Runx2 protein levels, CHIP expression decreases, whereas the expression of other E3 ligases involved in Runx2 degradation, such as Smurf1 or WWP1, remains constant or increases during osteoblast differentiation. Depletion of CHIP results in the stabilization of Runx2, enhances Runx2-mediated transcriptional activation, and promotes osteoblast differentiation in primary calvarial cells. In contrast, CHIP overexpression in preosteoblasts causes Runx2 degradation, inhibits osteoblast differentiation, and instead enhances adipogenesis. Our data suggest that negative regulation of the Runx2 protein by CHIP is critical in the commitment of precursor cells to differentiate into the osteoblast lineage.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitin ligase Smad ubiquitination regulatory factor-1 (Smurf1) negatively regulates bone morphogenetic protein (BMP) pathway by ubiquitinating certain signal components for degradation. Thus, it can be an eligible pharmacological target for increasing BMP signal responsiveness. We established a strategy to discover small molecule compounds that block the WW1 domain of Smurf1 from interacting with Smad1/5 by structure based virtual screening, molecular experimental examination and cytological efficacy evaluation. Our selected hits could reserve the protein level of Smad1/5 from degradation by interrupting Smurf1-Smad1/5 interaction and inhibiting Smurf1 mediated ubiquitination of Smad1/5. Further, these compounds increased BMP-2 signal responsiveness and the expression of certain downstream genes, enhanced the osteoblastic activity of myoblasts and osteoblasts. Our work indicates targeting Smurf1 for inhibition could be an accessible strategy to discover BMP-sensitizers that might be applied in future clinical treatments of bone disorders such as osteopenia.
    Scientific Reports 05/2014; 4:4965. DOI:10.1038/srep04965 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Redox signaling is a fundamental regulation of cell fate upon differentiation.•UPS plays important role in the maintenance of pluripotency and the triggering of differentiation.•UPS regulates through degradation the redox-mediated effectors of differentiation.•Interactome network of cardiomyocytes differentiated from ESC highlighted UPS role in pluripotency.•UPS likewise genome stability were found essential in the maintenance of pluripotency state.
    Biochimica et Biophysica Acta (BBA) - General Subjects 11/2014; DOI:10.1016/j.bbagen.2014.10.031 · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deciphering the inositol-requiring enzyme 1 (IRE1) signaling pathway is fundamentally important for understanding the unfolded protein response (UPR). The ubiquitination of proteins residing on the endoplasmic reticulum (ER) membrane has been reported to be involved in the UPR, although the mechanism has yet to be fully elucidated. Using immunoprecipitation and mass spectrometry, IRE1 was identified as a substrate of the E3 ligase carboxyl terminus of HSC70-interacting protein (CHIP) in HEK293 cells under geldanamycin-induced ER stress. Two residues of IRE1, K545 and K828, were targeted for K63-linked ubiquitination. Moreover, in CHIP knockdown cells, IRE1 phosphorylation and the IRE1-TRAF2 interaction were nearly abolished under ER stress, which may be due to lacking ubiquitination of IRE1 on K545 and K828, respectively. The cellular responses were evaluated, and the data indicated that CHIP-regulated IRE1/TRAF2/JNK signaling antagonized the senescence process. Therefore, our findings suggest that CHIP-mediated ubiquitination of IRE1 contributes to the dynamic regulation of the UPR.
    Journal of Biological Chemistry 09/2014; 289(44). DOI:10.1074/jbc.M114.562868 · 4.60 Impact Factor