Effect of protein, unsaturated fat, and carbohydrate intakes on plasma apolipoprotein B and VLDL and LDL containing apolipoprotein C-III: results from the OmniHeart Trial.

Harvard School of Public Health, Boston, MA, USA.
American Journal of Clinical Nutrition (Impact Factor: 6.92). 07/2008; 87(6):1623-30.
Source: PubMed

ABSTRACT Plasma apolipoprotein B (apo B) and VLDL and LDL with apolipoprotein C-III (apo C-III) are independent risk factors for cardiovascular disease (CVD). Dietary intake affects lipoprotein concentration and composition related to those apolipoproteins.
We studied differences in apo B lipoproteins with and without apo C-III after 3 healthy diets based on the Dietary Approaches to Stop Hypertension Trial diet.
Healthy participants (n = 162) were fed each of 3 healthy diets for 6 wk in a crossover design. Diets differed by emphasis of either carbohydrate (Carb), unsaturated fat (Unsat), or protein (Prot). Blood was collected at baseline and after diets for analysis.
Compared with the Carb diet, the Prot diet reduced plasma apo B and triglycerides in VLDL with apo C-III (16%, P = 0.07; 11%, P = 0.05, respectively) and apo B in LDL with apo C-III (16%, P = 0.04). Compared with the Unsat diet, the Prot diet reduced triglycerides in VLDL with apo C-III (16%, P = 0.02). Compared with baseline (subjects' usual diet was higher in saturated fat), the Prot diet reduced apo B in LDL with apo C-III (11%, P = 0.05), and all 3 diets reduced plasma total apo B (6-10%, P < 0.05) and apo B in the major type of LDL, LDL without apo C-III (8-10%, P < 0.01). All 3 diets reduced the ratio of apo C-III to apo E in VLDL.
Substituting protein for carbohydrate in the context of a healthy dietary pattern reduced atherogenic apo C-III-containing LDL and its precursor, apo C-III-containing VLDL, resulting in the most favorable profile of apo B lipoproteins. In addition, compared with a typical high-saturated fat diet, healthy diets that emphasize carbohydrate, protein, or unsaturated fat reduce plasma total and LDL apo B and produce a lower more metabolically favorable ratio of apo C-III to apo E.


Available from: Jeremy Furtado, May 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This is a qualitative review of the evidence linking dietary fat composition to the risk of developing dementia. The review considers laboratory and animal studies that identify underlying mechanisms as well as prospective epidemiologic studies linking biochemical or dietary fatty acids to cognitive decline or incident dementia. Several lines of evidence provide support for the hypothesis that high saturated or trans fatty acids increase the risk of dementia and high polyunsaturated or monounsaturated fatty acids decrease risk. Dietary fat composition is an important factor in blood-brain barrier function and the blood cholesterol profile. Cholesterol and blood-brain barrier function are involved in the neuropathology of Alzheimer's disease, and the primary genetic risk factor for Alzheimer's disease, apolipoprotein E-ε4, is involved in cholesterol transport. The epidemiologic literature is seemingly inconsistent on this topic, but many studies are difficult to interpret because of analytical techniques that ignored negative confounding by other fatty acids, which likely resulted in null findings. The studies that appropriately adjust for confounding by other fats support the dietary fat composition hypothesis.
    Neurobiology of Aging 05/2014; 35. DOI:10.1016/j.neurobiolaging.2014.03.038 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract: Despite gaining focus, cardiovascular disease (CVD) remains the leading cause of death worldwide. Health promotion agencies have traditionally recommended diets that are low in fat in order to reduce CVD risk however, much debate remains about which dietary approaches are the most efficient for effective disease prevention. Common markers of CVD include elevated plasma triglycerides (TG) and low-density lipoprotein (LDL) cholesterol levels, as well as reduced high-density lipoprotein (HDL) cholesterol levels. While weight loss alone can significantly reduce markers of CVD, manipulating dietary macronutrient content contributes to the beneficial effects of weight loss and furthers the improvement of lipid profiles even without the alteration of total caloric intake. Considering the recent attention to diets that are low in carbohydrates rather than fat, it remains to be elucidated the beneficial effects of each diet type when establishing new recommendations for CVD prevention. This review aims to examine the effects of different macronutrient compositions on lipid markers, thus providing insight into the potential roles of various diet types in the targeted prevention against CVD.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of both the amount and quality of dietary fat have been studied intensively during the past decades. Previously, low-fat diets were recommended without much attention to the quality of fat, whereas there is general emphasis on the quality of fat in current guidelines. The objective of this systematic review (SR) was to assess the evidence of an effect of the amount and type of dietary fat on body weight (BW), risk factors, and risk of non-communicable diseases, that is, type 2 diabetes (T2DM), cardiovascular diseases (CVD), and cancer in healthy subjects or subjects at risk for these diseases. This work was performed in the process of updating the fourth edition of the Nordic Nutrition Recommendations from 2004. The literature search was performed in October 2010 covering articles published since January 2000. A complementary search was done in February 2012 covering literature until December 2011. Two authors independently selected articles for inclusion from a total of about 16,000 abstracts according to predefined criteria. Randomized controlled trials (RCT) and prospective cohort studies (PCS) were included as well as nested case-control studies. A few retrospective case-control studies were also included when limited or no data were available from other study types. Altogether 607 articles were quality graded and the observed effects in these papers were summarized. Convincing evidence was found that partial replacement of saturated fat (SFA) with polyunsaturated fat (PUFA) or monounsaturated fat (MUFA) lowers fasting serum/plasma total and LDL cholesterol concentrations. The evidence was probable for a decreasing effect of fish oil on concentration of serum/plasma total triglycerides as compared with MUFA. Beneficial effect of MUFA both on insulin sensitivity and fasting plasma/serum insulin concentration was considered as probable in comparisons of MUFA and carbohydrates versus SFA, whereas no effect was found on fasting glucose concentration in these comparisons. There was probable evidence for a moderate direct association between total fat intake and BW. Furthermore, there was convincing evidence that partial replacement of SFA with PUFA decreases the risk of CVD, especially in men. This finding was supported by an association with biomarkers of PUFA intake; the evidence of a beneficial effect of dietary total PUFA, n-6 PUFA, and linoleic acid (LA) on CVD mortality was limited suggestive. Evidence for a direct association between total fat intake and risk of T2DM was inconclusive, whereas there was limited-suggestive evidence from biomarker studies that LA is inversely associated with the risk of T2DM. However, there was limited-suggestive evidence in biomarker studies that odd-chain SFA found in milk fat and fish may be inversely related to T2DM, but these associations have not been supported by controlled studies. The evidence for an association between dietary n-3 PUFA and T2DM was inconclusive. Evidence for effects of fat on major types of cancer was inconclusive regarding both the amount and quality of dietary fat, except for prostate cancer where there was limited-suggestive evidence for an inverse association with intake of ALA and for ovarian cancer for which there was limited-suggestive evidence for a positive association with intake of SFA. This SR reviewed a large number of studies focusing on several different health outcomes. The time period covered by the search may not have allowed obtaining the full picture of the evidence in all areas covered by this SR. However, several SRs and meta-analyses that covered studies published before year 2000 were evaluated, which adds confidence to the results. Many of the investigated questions remain unresolved, mainly because of few studies on certain outcomes, conflicting results from studies, and lack of high quality-controlled studies. There is thus an evident need of highly controlled RCT and PCS with sufficient number of subjects and long enough duration, specifically regarding the effects of the amount and quality of dietary fat on insulin sensitivity, T2DM, low-grade inflammation, and blood pressure. New metabolic and other potential risk markers and utilization of new methodology in the area of lipid metabolism may provide new insight.
    Food & Nutrition Research 07/2014; 58. DOI:10.3402/fnr.v58.25145 · 1.79 Impact Factor