Hormetic dietary phytochemicals.

Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
Neuromolecular medicine (Impact Factor: 5). 07/2008; 10(4):236-46. DOI: 10.1007/s12017-008-8037-y
Source: PubMed

ABSTRACT Compelling evidence from epidemiological studies suggests beneficial roles of dietary phytochemicals in protecting against chronic disorders such as cancer, and inflammatory and cardiovascular diseases. Emerging findings suggest that several dietary phytochemicals also benefit the nervous system and, when consumed regularly, may reduce the risk of disorders such as Alzheimer's and Parkinson's diseases. The evidence supporting health benefits of vegetables and fruits provide a rationale for identification of the specific phytochemicals responsible, and for investigation of their molecular and cellular mechanisms of action. One general mechanism of action of phytochemicals that is emerging from recent studies is that they activate adaptive cellular stress response pathways. From an evolutionary perspective, the noxious properties of such phytochemicals play an important role in dissuading insects and other pests from eating the plants. However at the subtoxic doses ingested by humans that consume the plants, the phytochemicals induce mild cellular stress responses. This phenomenon has been widely observed in biology and medicine, and has been described as 'preconditioning' or 'hormesis.' Hormetic pathways activated by phytochemicals may involve kinases and transcription factors that induce the expression of genes that encode antioxidant enzymes, protein chaperones, phase-2 enzymes, neurotrophic factors, and other cytoprotective proteins. Specific examples of such pathways include the sirtuin-FOXO pathway, the NF-kappaB pathway, and the Nrf-2/ARE pathway. In this article, we describe the hormesis hypothesis of phytochemical actions with a focus on the Nrf2/ARE signaling pathway as a prototypical example of a neuroprotective mechanism of action of specific dietary phytochemicals.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenic processes involving in the development of diabetes range from autoimmune destruction of pancreatic β-cells with consequent insulin deficiency to abnormalities that result in resistance to insulin action. The major contributing factor for excessive β-cell death includes oxidative stress-mediated mitochondrial damage, which creates an imbalance in redox homeostasis. Yet, β-cells have evolved adaptive mechanisms to endure a wide range of stress conditions to safeguard its potential functions. These include ‘Nrf2/Keap1′ pathway, a key cellular defense mechanism, to combat oxidative stress by regulating phase II detoxifying and antioxidant genes. During diabetes, redox imbalance provokes defective Nrf2-dependent signaling and compromise antioxidant capacity of the pancreas which turnout β-cells to become highly vulnerable against various insults. Hence, identification of small molecule activators of Nrf2/Keap1 pathway remains significant to enhance cellular defense to overcome the burden of oxidative stress related disturbances. This review summarizes the molecular mechanism behind Nrf2 activation and the impact of Nrf2 activators in diabetes and its complications.
    Pharmacological Research 10/2014; 91. · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint.
    PLoS ONE 12/2014; 9(12):e114764. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.
    Pharmacological reviews 07/2014; 66(3):815-68. · 18.55 Impact Factor


Available from