Article

The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma.

Center for Cell Signaling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2008; 105(24):8292-7. DOI: 10.1073/pnas.0707761105
Source: PubMed

ABSTRACT The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110alpha, p110beta, and p110delta) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110alpha and p110delta to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110gamma class IB PI3K lack SH2 domains and instead couple p110gamma to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110beta and cells derived from a p110beta-deficient mouse line, that p110beta is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110beta and p110gamma contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110beta but not p110gamma, p110beta mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110gamma in these cells reduced the contribution of p110beta to GPCR signaling. Taken together, these data show that p110beta and p110gamma can couple redundantly to the same GPCR agonists. p110beta, which shows a much broader tissue distribution than the leukocyte-restricted p110gamma, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110gamma expression is low or absent.

0 Bookmarks
 · 
173 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PI3Ks regulate several key events in the inflammatory response to damage and infection. There are four Class I PI3K isoforms (PI3Kα,β,γ,δ), three Class II PI3K isoforms (PI3KC2α, C2β, C2γ) and a single Class III PI3K. The four Class I isoforms synthesise the phospholipid ‘PIP3’. PIP3 is a ‘second messenger’ used by many different cell surface receptors to control cell movement, growth, survival and differentiation. These four isoforms have overlapping functions but each is adapted to receive efficient stimulation by particular receptor sub-types. PI3Kγ is highly expressed in leukocytes and plays a particularly important role in chemokine-mediated recruitment and activation of innate immune cells at sites of inflammation. PI3Kδ is also highly expressed in leukocytes and plays a key role in antigen receptor and cytokine-mediated B and T cell development, differentiation and function. Class III PI3K synthesises the phospholipid PI3P, which regulates endosome-lysosome trafficking and the induction of autophagy, pathways involved in pathogen killing, antigen processing and immune cell survival. Much less is known about the function of Class II PI3Ks, but emerging evidence indicates they can synthesise PI3P and PI34P2 and are involved in the regulation of endocytosis.
    Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 12/2014; 32. DOI:10.1016/j.bbalip.2014.12.006 · 4.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Upregulation of phosphoinositide 3-kinase (PI3K) signaling is a common alteration in human cancer, and numerous drugs that target this pathway have been developed for cancer treatment. However, recent studies have implicated inhibition of the PI3K signaling pathway as the cause of a drug-induced long-QT syndrome in which alterations in several ion currents contribute to arrhythmogenic drug activity. Surprisingly, some drugs that were thought to induce long-QT syndrome by direct block of the rapid delayed rectifier (IKr) also seem to inhibit PI3K signaling, an effect that may contribute to their arrhythmogenicity. The importance of PI3K in regulating cardiac repolarization is underscored by evidence that QT interval prolongation in diabetes mellitus also may result from changes in multiple currents because of decreased insulin activation of PI3K in the heart. How PI3K signaling regulates ion channels to control the cardiac action potential is poorly understood. Hence, this review summarizes what is known about the effect of PI3K and its downstream effectors, including Akt, on sodium, potassium, and calcium currents in cardiac myocytes. We also refer to some studies in noncardiac cells that provide insight into potential mechanisms of ion channel regulation by this signaling pathway in the heart. Drug development and safety could be improved with a better understanding of the mechanisms by which PI3K regulates cardiac ion channels and the extent to which PI3K inhibition contributes to arrhythmogenic susceptibility. © 2015 American Heart Association, Inc.
    Circulation Research 01/2015; 116(1):127-137. DOI:10.1161/CIRCRESAHA.116.303975 · 11.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is the second leading cause of cancer death in women. Targeted therapies are available for HER2-positive and endocrine-sensitive disease while chemotherapy remains the mainstay of treatment for triple-negative breast cancer. The efficacy of all targeted interventions is, however, limited by primary or secondary resistance. Preclinical data show that active PI3K/AKT/mTOR signaling contributes to therapy resistance in HER2-positive and hormone-receptor-positive breast cancer. In line with these preclinical observations, clinical trials such as BOLERO-2 demonstrated a benefit of additional inhibition of mTOR signaling in advanced estrogen-receptor-positive breast cancer patients refractory to prior aromatase-inhibitor therapy. Besides the mTOR, several other proteins involved in the PI3K-pathway serve as potential therapeutic targets, such as PI3K and AKT. In this review, we summarize the current available knowledge and experimental and clinical research results about targeting the PI3K-pathway in breast cancer and, thus, provide the rationale for PI3K- and AKT-inhibitor use in the clinic.
    Current Breast Cancer Reports 06/2014; 6(2):59-70. DOI:10.1007/s12609-014-0139-y

Full-text

Download
33 Downloads
Available from
May 28, 2014