Article

Effect of pioglitazone treatment on endoplasmic reticulum stress response in human adipose and in palmitate-induced stress in human liver and adipose cell lines

Endocrinology Section, Medicine and Research Services, Central Arkansas Veterans Healthcare System, John L. McClellan Memorial Veterans Hospital, 4300 W. 7th St., Little Rock, AR 72205, USA.
AJP Endocrinology and Metabolism (Impact Factor: 4.09). 07/2008; 295(2):E393-400. DOI: 10.1152/ajpendo.90355.2008
Source: PubMed

ABSTRACT Obesity and elevated cytokine secretion result in a chronic inflammatory state and may cause the insulin resistance observed in type 2 diabetes. Recent studies suggest a key role for endoplasmic reticulum stress in hepatocytes and adipocytes from obese mice, resulting in reduced insulin sensitivity. To address the hypothesis that thiazolidinediones, which improve peripheral insulin sensitivity, act in part by reducing the endoplasmic reticulum stress response, we tested subcutaneous adipose tissue from 20 obese volunteers treated with pioglitazone for 10 wk. We also experimentally induced endoplasmic reticulum stress using palmitate, tunicamycin, and thapsigargin in the human HepG2 liver cell line with or without pioglitazone pretreatment. We quantified endoplasmic reticulum stress response by measuring both gene expression and phosphorylation. Pioglitazone significantly improved insulin sensitivity in human volunteers (P = 0.002) but did not alter markers of endoplasmic reticulum stress. Differences in pre- and posttreatment endoplasmic reticulum stress levels were not correlated with changes in insulin sensitivity or body mass index. In vitro, palmitate, thapsigargin, and tunicamycin but not oleate induced endoplasmic reticulum stress in HepG2 cells, including increased transcripts CHOP, ERN1, GADD34, and PERK, and increased XBP1 splicing along with phosphorylation of eukaryotic initiation factor eIF2alpha, JNK1, and c-jun. Although patterns of endoplasmic reticulum stress response differed among palmitate, tunicamycin, and thapsigargin, pioglitazone pretreatment had no significant effect on any measure of endoplasmic reticulum stress, regardless of the inducer. Together, our data suggest that improved insulin sensitivity with pioglitazone is not mediated by a reduction in endoplasmic reticulum stress.

Full-text

Available from: Swapan K Das, Jun 21, 2014
0 Followers
 · 
155 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptor (PPAR) α/γ dual agonists have been developed to alleviate metabolic disorders and have the potential to be used as therapeutic agents for the treatment of type 2 diabetes. In this study, we investigated the effects of a newly synthesized PPAR α/γ dual agonist, 2-[4-(5-chlorobenzo [d] thiazol-2-yl) phenoxy]-2-methylpropanoic acid (MHY908) on type 2 diabetes in vitro and in vivo. To obtain initial evidence that MHY908 acts as a PPAR α/γ dual agonist, ChIP and reporter gene assays were conducted in AC2F rat liver cells, and to investigate the anti-diabetic effects and molecular mechanisms, eight-week-old, male db/db mice were allowed to eat ad libitum, placed on calorie restriction, or administered MHY908 (1 mg or 3 mg/kg/day) mixed in food for 4 weeks. Age-matched male db/m lean mice served as non-diabetic controls. It was found that MHY908 enhanced the binding and transcriptional activity of PPAR α and γ in AC2F cells, and it reduced serum glucose, triglyceride, and insulin levels, however increased adiponectin levels without body weight gain. In addition, MHY908 significantly improved hepatic steatosis by enhancing CPT-1 levels. Remarkably, MHY908 reduced endoplasmic reticulum (ER) stress and c-Jun N-terminal kinase (JNK) activation in the livers of db/db mice, and subsequently reduced insulin resistance. The study shows MHY908 has beneficial effects on type 2 diabetes by simultaneously activating PPAR α/γ and improving ER stress, and suggests that MHY908 could have a potent anti-diabetic effect as a PPAR α/γ dual agonist, and potential for the treatment of type 2 diabetes.
    PLoS ONE 11/2013; 8(11):e78815. DOI:10.1371/journal.pone.0078815 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context and Objective Adipose tissue in insulin resistant subjects contains inflammatory cells and extracellular matrix components. This study examined adipose pathology of insulin resistant subjects who were treated with pioglitazone or fish oil. Design, Setting and Participants Adipose biopsies were examined from nine insulin resistant subjects before/after treatment with pioglitazone 45 mg/day for 12 weeks and also from 19 subjects who were treated with fish oil (1,860 mg EPA, 1,500 mg DHA daily). These studies were performed in a clinical research center setting. Results Pioglitazone treatment increased the cross-sectional area of adipocytes by 18% (p = 0.01), and also increased capillary density without affecting larger vessels. Pioglitazone treatment decreased total adipose macrophage number by 26%, with a 56% decrease in M1 macrophages and an increase in M2 macrophages. Mast cells were more abundant in obese versus lean subjects, and were decreased from 24 to 13 cells/mm2 (p = 0.02) in patients treated with pioglitazone, but not in subjects treated with FO. Although there were no changes in total collagen protein, pioglitazone increased the amount of elastin protein in adipose by 6-fold. Conclusion The PPARγ agonist pioglitazone increased adipocyte size yet improved other features of adipose, increasing capillary number and reducing mast cells and inflammatory macrophages. The increase in elastin may better permit adipocyte expansion without triggering cell necrosis and an inflammatory reaction.
    PLoS ONE 07/2014; 9(7):e102190. DOI:10.1371/journal.pone.0102190 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Research has indicated that stress on the endoplasmic reticulum (ER) of a cell affects the pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD). Resolvins, a novel family derived from ω-3 polyunsaturated fatty acids, have anti-inflammatory and insulin sensitizing properties, and it has been suggested that they play a role in the amelioration of obesity-related metabolic dysfunctions. This study showed that pretreatment with resolvin D1 (RvD1) attenuated ER stress-induced apoptosis and also decreased caspase 3 activity in HepG2 cells. Furthermore, RvD1 significantly decreased tunicamycin-induced triglycerides accumulation as well as SREBP-1 expression. However, tunicamycin-induced ER stress markers were not significantly affected by RvD1 treatment. Moreover, RvD1 treatment did not affect the tunicamycin-induced expression of chaperones that assist protein folding in the ER. These results suggest that RvD1-conferred cellular protection may occur downstream of the ER stress. This was supported by the finding that RvD1 significantly inhibited tunicamycin-induced c-Jun N-terminal kinase (JNK) expression, although P38 and ERK1/2 phosphorylation were not affected. In addition, anisomycin, a JNK activator, increased caspase 3 activity and apoptosis as well as triglycerides accumulation and SREBP1 expression, and RvD1 treatment reversed these changes. In conclusion, RvD1 attenuated ER stress-induced hepatic steatosis and apoptosis via the JNK-mediated pathway. This study may provide insight into a novel underlying mechanism and a strategy for treating NAFLD.
    Molecular and Cellular Endocrinology 06/2014; DOI:10.1016/j.mce.2014.04.012 · 4.24 Impact Factor