Antibacterial characteristics of Curcuma xanthorrhiza extract on Streptococcus mutans biofilm

Department of Preventive Dentistry and Public Oral Health, Yonsei University, Seoul 120-752, Republic of Korea.
The Journal of Microbiology (Impact Factor: 1.44). 04/2008; 46(2):228-32. DOI: 10.1007/s12275-007-0167-7
Source: PubMed


This study evaluated the antibacterial effects of a natural Curcuma xanthorrhiza extract (Xan) on a Streptococcus mutans biofilm by examining the bactericidal activity, inhibition of acidogenesis and morphological alteration. Xan was obtained from the roots of a medicinal plant in Indonesia, which has shown selective antibacterial effects on planktonic S. mutans. S. mutans biofilms were formed on slide glass over a 72 h period and treated with the following compounds for 5, 30, and 60 min: saline, 1% DMSO, 2 mg/ml chlorhexidine (CHX), and 0.1 mg/ml Xan. The Xan group exposed for 5 and 30 min showed significantly fewer colony forming units (CFU, 57.6 and 97.3%, respectively) than those exposed to 1% DMSO, the negative control group (P<0.05). These CFU were similar in number to those slides exposed to CHX, the positive control group. Xan showed similar bactericidal effect to that of CHX but the dose of Xan was one twentieth that of CHX. In addition, the biofilms treated with Xan and CHX maintained a neutral pH for 4 h, which indicates that Xan and CHX inhibit acid production. Scanning electron microscopy showed morphological changes in the cell wall and membrane of the Xan-treated biofilms; an uneven surface and a deformation in contour. Overall, natural Xan has strong bactericidal activity, inhibitory effects on acidogenesis, and alters the microstructure of S. mutans biofilm. In conclusion, Xan has potential in anti-S. mutans therapy for the prevention of dental caries.

100 Reads
  • Source
    • "Methanol extract was used for the experiment. The effect of crude plant extract on the acid production by S. mutans grown in biofilms was studied using a technique described by Kim et al. [19], with modifications [19]. Fresh inocula of S. mutans with optical density of 0.2 (405 nm) containing approximately 105-106 organisms per millilitre were prepared. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim. This study investigated the effect of Dodonaea viscosa var. angustifolia (DVA) on the virulence properties of cariogenic Streptococcus mutans and Porphyromonas gingivalis implicated in periodontal diseases. Methods. S. mutans was cultured in tryptone broth containing a crude leaf extract of DVA for 16 hours, and the pH was measured after 10, 12, 14, and 16 h. Biofilms of S. mutans were grown on glass slides for 48 hours and exposed to plant extract for 30 minutes; the adherent cells were reincubated and the pH was measured at various time intervals. Minimum bactericidal concentration of the extracts against the four periodontal pathogens was determined. The effect of the subinhibitory concentration of plant extract on the production of proteinases by P. gingivalis was also evaluated. Results. DVA had no effect on acid production by S. mutans biofilms; however, it significantly inhibited acid production in planktonic cells. Periodontal pathogens were completely eliminated at low concentrations ranging from 0.09 to 0.02 mg/mL of crude plant extracts. At subinhibitory concentrations, DVA significantly reduced Arg-gingipain (24%) and Lys-gingipain (53%) production by P. gingivalis (P ≤ 0.01). Conclusions. These results suggest that DVA has the potential to be used to control oral infections including dental caries and periodontal diseases.
    Evidence-based Complementary and Alternative Medicine 10/2013; 2013:624089. DOI:10.1155/2013/624089 · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the ability of methyl gallate (MG) and gallic acid (GA), the main compounds of gallo-tannins in Galla Rhois, to inhibit the proliferation of oral bacterial and the in vitro formation of Streptococcus mutans biofilms. The antimicrobial activities of these compounds were evaluated in vitro using the broth microdilution method and a beaker-wire test. Both MG and GA had inhibitory effects on the growth of cariogenic (MIC<8 mg/ml) and periodontopathic bacteria (MIC=1 mg/ml). Moreover, these compounds significantly inhibited the in vitro formation of S. mutans biofilms (MG, 1 mg/ml; GA, 4 mg/ml; P<0.05). MG was more effective in inhibiting bacterial growth and the formation of S. mutans biofilm than GA. In conclusion, MG and GA can inhibit the growth of oral pathogens and S. mutans biofilm formation, and may be used to prevent the formation of oral biofilms.
    The Journal of Microbiology 12/2008; 46(6):744-50. DOI:10.1007/s12275-008-0235-7 · 1.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of dental biofilm caused by oral bacteria on tooth surfaces is the primary step leading to oral diseases. This study was performed to investigate the preventive and reducing effects of panduratin A, isolated from Kaempferia pandurata Roxb., against multi-species oral biofilms consisting of Streptococcus mutans, Streptococcus sanguis and Actinomyces viscosus. Minimum inhibitory concentration (MIC) of panduratin A was determined by the Clinical and Laboratory Standards Institute (CLSI) broth microdilution assay. Prevention of biofilm formation was performed on 96-well microtiter plates by coating panduratin A in mucin at 0.5-40 microg/ml, followed by biofilm formation at 37 degrees C for 24 h. The reducing effect on the preformed biofilm was tested by forming the biofilm at 37 degrees C for 24 h, followed by treatment with panduratin A at 0.2-10 microg/ml for up to 60 min. Panduratin A showed a MIC of 1 microg/ml for multi-species strains. Panduratin A at 2 x MIC for 8 h exhibited bactericidal activity against multi-species planktonic cells for 8 h. At 8 x MIC, panduratin A was able to prevent biofilm formation by > 50%. Biofilm mass was reduced by > 50% after exposure to panduratin A at 10 microg/ml for 15 min. Panduratin A showed a dose-dependent effect in preventing and reducing the biofilm. These results suggest that panduratin A is applicable as a natural anti-biofilm agent to eliminate oral bacterial colonization during early dental plaque formation.
    Journal of Oral Science 04/2009; 51(1):87-95. DOI:10.2334/josnusd.51.87 · 0.92 Impact Factor
Show more

Similar Publications

Preview (2 Sources)

100 Reads
Available from