Article

Genetic modifier screens reveal new components that interact with the Drosophila dystroglycan-dystrophin complex.

Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America.
PLoS ONE (Impact Factor: 3.53). 02/2008; 3(6):e2418. DOI: 10.1371/journal.pone.0002418
Source: PubMed

ABSTRACT The Dystroglycan-Dystrophin (Dg-Dys) complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-beta and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought.

0 Bookmarks
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscular dystrophy arises from ongoing muscle degeneration and insufficient regeneration. This imbalance leads to loss of muscle, with replacement by scar or fibrotic tissue, resulting in muscle weakness and, eventually, loss of muscle function. Human muscular dystrophy is characterized by a wide range of disease severity, even when the same genetic mutation is present. This variability implies that other factors, both genetic and environmental, modify the disease outcome. There has been an ongoing effort to define the genetic and molecular bases that influence muscular dystrophy onset and progression. Modifier genes for muscle disease have been identified through both candidate gene approaches and genome-wide surveys. Multiple lines of experimental evidence have now converged on the transforming growth factor-β (TGF-β) pathway as a modifier for muscular dystrophy. TGF-β signaling is upregulated in dystrophic muscle as a result of a destabilized plasma membrane and/or an altered extracellular matrix. Given the important biological role of the TGF-β pathway, and its role beyond muscle homeostasis, we review modifier genes that alter the TGF-β pathway and approaches to modulate TGF-β activity to ameliorate muscle disease.
    FEBS Journal 09/2013; 280(17). DOI:10.1111/febs.12266 · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Progress into developing therapeutics for rare diseases can be accelerated for those diseases that can be modeled in genetically tractable organisms. Here we comment on one disease, Duchenne Muscular Dystrophy (DMD), modeled in Drosophila that brought together disparate lines of research toward the goal of developing a therapeutic. Though the bioactive lipid sphingosine 1-phosphate (S1P) has been implicated in many anabolic processes in many cell types and tissues, including muscle, this work confirmed the therapeutic potential of assessing this pathway for DMD. Genetic dissection of sphingolipid metabolism showed the suppression of muscle structural and functional defects in flies. Moreover, improvement of muscle defects using known pharmacological agents that raise S1P levels in vivo highlight the potential of Drosophila as a drug-screening tool for DMD. We and others have extended S1P studies into the mouse model of DMD and have shown a partial amelioration of symptoms associated with DMD. Translation of this work to mammals makes the sphingolipid metabolism pathway a promising target for further drug development that may benefit the human condition.
    05/2013; 1(1):e24995. DOI:10.4161/rdis.24995
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant-mediated RNA interference (RNAi) has been successfully used as a tool to study gene function in aphids. The persistence and transgenerational effects of plant-mediated RNAi in the green peach aphid (GPA) Myzus persicae were investigated, with a focus on three genes with different functions in the aphid. Rack1 is a key component of various cellular processes inside aphids, while candidate effector genes MpC002 and MpPIntO2 (Mp2) modulate aphid-plant interactions. The gene sequences and functions did not affect RNAi-mediated down-regulation and persistence levels in the aphids. Maximal reduction of gene expression was ~70% and this was achieved at between 4 d and 8 d of exposure of the aphids to double-stranded RNA (dsRNA)-producing transgenic Arabidopsis thaliana. Moreover, gene expression levels returned to wild-type levels within ~6 d after removal of the aphids from the transgenic plants, indicating that a continuous supply of dsRNA is required to maintain the RNAi effect. Target genes were also down-regulated in nymphs born from mothers exposed to dsRNA-producing transgenic plants, and the RNAi effect lasted twice as long (12-14 d) in these nymphs. Investigations of the impact of RNAi over three generations of aphids revealed that aphids reared on dsMpC002 transgenic plants experienced a 60% decline in aphid reproduction levels compared with a 40% decline of aphids reared on dsRack1 and dsMpPIntO2 plants. In a field setting, a reduction of the aphid reproduction by 40-60% would dramatically decrease aphid population growth, contributing to a substantial reduction in agricultural losses. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
    Journal of Experimental Botany 11/2014; 66(2). DOI:10.1093/jxb/eru450 · 5.79 Impact Factor

Full-text (3 Sources)

Download
5 Downloads
Available from
Dec 19, 2014