Article

Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope.

Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
Optics Express (Impact Factor: 3.53). 06/2008; 16(10):7224-32. DOI: 10.1364/OE.16.007224
Source: PubMed

ABSTRACT We present a handheld dual-axes confocal microscope that is based on a two-dimensional microelectromechanical systems (MEMS) scanner. It performs reflectance and fluorescence imaging at 488 nm wavelength, with three-dimensional imaging capability. The fully packaged microscope has a diameter of 10 mm and acquires images at 4 Hz frame rate with a maximum field of view of 400 microm x 260 microm. The transverse and axial resolutions of the handheld probe are 1.7 microm and 5.8 microm, respectively. Capability to perform real time small animal imaging is demonstrated in vivo in transgenic mice.

0 Bookmarks
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mounting evidence suggests that a more extensive surgical resection is associated with an improved life expectancy for both low-grade and high-grade glioma patients. However, radiographically complete resections are not often achieved in many cases due to the lack of sensitivity and specificity of current neurosurgical guidance techniques at the margins of diffuse infiltrative gliomas. Intraoperative fluorescence imaging offers the potential to improve the extent of resection and to investigate the possible benefits of resecting beyond the radiographic margins. Here, we provide a review of wide-field and high-resolution fluorescence-imaging strategies that are being developed for neurosurgical guidance, with a focus on emerging imaging technologies and clinically viable contrast agents. The strengths and weaknesses of these approaches will be discussed, as well as issues that are being addressed to translate these technologies into the standard of care.
    Neurosurgery 03/2014; · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis is a major cause of global morbidity and mortality that could benefit from novel targeted therapeutics. Recent studies have shown efficient and local drug delivery with nanoparticles, although the nanoparticle targeting mechanism for atherosclerosis has not yet been fully elucidated. Here we used in vivo and ex vivo multimodal imaging to examine permeability of the vessel wall and atherosclerotic plaque accumulation of fluorescently labeled liposomal nanoparticles in a rabbit model. We found a strong correlation between permeability as established by in vivo DCE-MRI and nanoparticle plaque accumulation with subsequent nanoparticle distribution throughout the vessel wall. These key observations will enable the development of nanotherapeutic strategies for atherosclerosis.
    ACS Nano 01/2015; · 12.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate the erosion-inhibiting effect of two toothpastes on the development of erosion-like lesions, by a confocal laser scanning microscope (CLSM). Forty human enamel blocks were divided into five groups (n = 8), in accordance to evaluate the GC MI Paste Plus and Oral B with stannous fluoride, applied as slurries and associated with toothbrush. Specimens were submitted to an erosion challenge from citric acid (0.5%, pH = 2.8), for 5 min, six times a day, alternating in artificial saliva immersions. Reference group was not exposed to treatment. Part of specimens (Groups 02 and 03) was exposed twice daily just to slurries, for 2 min, therefore specimens from Groups 04 and 05 were also abraded, for 30 s. The enamel surfaces were morphological characterized using CLSM images, with mineral loss being measured using the resulting 3D images referenced to an un-challenged portion of the sample. Step values were compared using the one-way ANOVA test. CLSM was shown to be a viable, noncontact, and simple technique to characterize eroded surfaces. The statistical difference in the step size was significant between the groups (P = 0.001) and using multiple comparisons a statistically significant protective effect of toothpastes was shown when these were applied as slurries. Although groups submitted to tooth brush showed mineral loss similar to reference control group, due to the damages of abrasion associated. Microsc. Res. Tech., 2014. © 2014 Wiley Periodicals, Inc.
    Microscopy Research and Technique 04/2014; · 1.59 Impact Factor

Full-text (2 Sources)

Download
30 Downloads
Available from
May 17, 2014