Article

Molecular and clinical genetics of mitochondrial diseases due to POLG mutations.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
Human Mutation (Impact Factor: 5.05). 07/2008; 29(9):E150-72. DOI: 10.1002/humu.20824
Source: PubMed

ABSTRACT Mutations in the POLG gene have emerged as one of the most common causes of inherited mitochondrial disease in children and adults. They are responsible for a heterogeneous group of at least 6 major phenotypes of neurodegenerative disease that include: 1) childhood Myocerebrohepatopathy Spectrum disorders (MCHS), 2) Alpers syndrome, 3) Ataxia Neuropathy Spectrum (ANS) disorders, 4) Myoclonus Epilepsy Myopathy Sensory Ataxia (MEMSA), 5) autosomal recessive Progressive External Ophthalmoplegia (arPEO), and 6) autosomal dominant Progressive External Ophthalmoplegia (adPEO). Due to the clinical heterogeneity, time-dependent evolution of symptoms, overlapping phenotypes, and inconsistencies in muscle pathology findings, definitive diagnosis relies on the molecular finding of deleterious mutations. We sequenced the exons and flanking intron region from approximately 350 patients displaying a phenotype consistent with POLG related mitochondrial disease and found informative mutations in 61 (17%). Two mutant alleles were identified in 31 unrelated index patients with autosomal recessive POLG-related disorders. Among them, 20 (67%) had Alpers syndrome, 4 (13%) had arPEO, and 3 (10%) had ANS. In addition, 30 patients carrying one altered POLG allele were found. A total of 25 novel alterations were identified, including 6 null mutations. We describe the predicted structural/functional and clinical importance of the previously unreported missense variants and discuss their likelihood of being pathogenic. In conclusion, sequence analysis allows the identification of mutations responsible for POLG-related disorders and, in most of the autosomal recessive cases where two mutant alleles are found in trans, finding deleterious mutations can provide an unequivocal diagnosis of the disease.

0 Bookmarks
 · 
127 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial DNA maintenance disorders are an important cause of hereditary ataxia syndrome, and the majority are associated with mutations in the gene encoding the catalytic subunit of the mitochondrial DNA polymerase (DNA polymerase gamma), POLG. Mutations resulting in the amino acid substitutions A467T and W748S are the most common genetic causes of inherited cerebellar ataxia in Europe. We report here a POLG mutational screening in a family with a mitochondrial ataxia phenotype. To evaluate the likely pathogenicity of each of the identified changes, a 3D structural analysis of the PolG protein was carried out, using the Alpers mutation clustering tool reported previously. Three novel nucleotide changes and the p.Q1236H polymorphism have been identified in the affected members of the pedigree. Computational analysis suggests that the p.K601E mutation is likely the major contributing factor to the pathogenic phenotype. Computational analysis of the PolG protein suggests that the p.K601E mutation is likely the most significant contributing factor to a pathogenic phenotype. However, the co-occurrence of multiple POLG alleles may be necessary in the development an adult-onset mitochondrial ataxia phenotype.
    BMC Research Notes 12/2014; 7(1):883.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Due to the complicated clinical features of mitochondrial encephalomyopathy, simplified mitochondrial disease criteria (MDC) have recently been established in Europe. This study evaluated the sensitivity and specificity of this scoring system in Chinese patients. Seventy-eight patients with suspected mitochondrial encephalomyopathy were recruited to be scored by the simplified MDC and were further classified into “possible” (2–4), “probable” (5–7), or “definite” categories (≥8). Significant differences were observed between the total scores in the mitochondrial encephalomyopathy group and the other myopathy group. In the mitochondrial encephalomyopathy group, 73.5% of patients had a score above 8, whereas in the other myopathy group, the “definite” percentage was only 3.2%, suggesting the proposed MDC scoring system has a high sensitivity for diagnosis of mitochondrial encephalomyopathy in China. Moreover, there were significant differences in the clinical scores and imaging portions of the MDC, suggesting that the simplified MDC may distinguish mitochondrial disorder from other multisystem disorders to aid in early diagnosis prior to a muscle biopsy.
    International Journal of Neuroscience 01/2013; 123(2). · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial DNA (mtDNA) analysis is centralized in the Department of Neuropathology, Beaumont Hospital. Services offered include analysis of common mtDNA point mutations, large scale mtDNA deletions/rearrangements, and sequencing of the nuclear gene POLG. The aims of this study were to audit the mtDNA diagnostic service over a 10-year period, to determine appropriate use of the service, and to improve efficient use of the service by devising a requisition form that includes diagnostic algorithms. Between July 2002 and October 2013, 716 samples were received for analysis. Overall, the number of confirmed mutations was low. Lack of diagnostic algorithms may result in expansive, unrefined requests, leading to costly investigations. We introduced a requisition form that extracts clinical, biochemical, and pathological data prior to analysis. With this information, diagnostic algorithms can be applied to select the most relevant mutations for initial analysis and also to increase the incidence of mutation detection.
    Clinical neuropathology 07/2014; 33(4):279-83. · 1.31 Impact Factor

Full-text (2 Sources)

Download
63 Downloads
Available from
May 21, 2014