Loss of glial glutamate and aspartate transporter (excitatory amino acid transporter 1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and metabotropic glutamate 2/3 agonist.

Laboratory for Clinical and Translational Studies, National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, Maryland 20892, USA.
Biological psychiatry (Impact Factor: 9.47). 07/2008; 64(9):810-4. DOI: 10.1016/j.biopsych.2008.05.001
Source: PubMed

ABSTRACT Recent data suggest that excessive glutamatergic signaling in the prefrontal cortex may contribute to the pathophysiology of schizophrenia and that promoting presynaptic glutamate modulation via group II metabotropic glutamate 2/3 (mGlu2/3) receptor activation can exert antipsychotic efficacy. The glial glutamate and aspartate transporter (GLAST) (excitatory amino acid transporter 1 [EAAT1]) regulates extracellular glutamate levels via uptake into glia, but the consequences of GLAST dysfunction for schizophrenia are largely unknown.
We examined GLAST knockout mice (KO) for behaviors thought to model positive symptoms in schizophrenia (locomotor hyperactivity to novelty, exaggerated locomotor response to N-methyl-d-aspartate receptor [NMDAR] antagonism) and the ability of haloperidol and the mGlu2/3 agonist LY379268 to normalize novelty-induced hyperactivity.
Glial glutamate and aspartate transporter KO consistently showed locomotor hyperactivity to a novel but not familiar environment, relative to wild-type (WT) mice. The locomotor hyperactivity-inducing effects of the NMDAR antagonist MK-801 was exaggerated in GLAST KO relative to WT. Treatment with haloperidol or LY379268 normalized novelty-induced locomotor hyperactivity in GLAST KO.
Schizophrenia-related abnormalities in GLAST KO raise the possibility that loss of GLAST-mediated glutamate clearance could be a pathophysiological risk factor for the disease. Our findings provide novel support for the hypothesis that glutamate dysregulation contributes to the pathophysiology of schizophrenia and for the antipsychotic potential of mGlu2/3 agonists.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glaucoma is the second leading cause of blindness worldwide and is characterized by gradual visual impairment owing to progressive loss of retinal ganglion cells (RGCs) and their axons. Glutamate excitotoxicity has been implicated as a mechanism of RGC death in glaucoma. Consistent with this claim, we previously reported that glutamate/aspartate transporter (GLAST)-deficient mice show optic nerve degeneration that is similar to that observed in glaucoma. Therefore, drugs that upregulate GLAST may be useful for neuroprotection in glaucoma. Although many compounds are known to increase the expression of another glial glutamate transporter, EAAT2/GLT1, few compounds are shown to increase GLAST expression. Arundic acid is a glial modulating agent that ameliorates delayed ischemic brain damage by attenuating increases in extracellular glutamate. We hypothesized that arundic acid neuroprotection involves upregulation of GLAST. To test this hypothesis, we examined the effect of arundic acid on GLAST expression and glutamate uptake. We found that arundic acid induces GLAST expression in vitro and in vivo. In addition, arundic acid treatment prevented RGC death by upregulating GLAST in heterozygous (GLAST(+/-)) mice. Furthermore, arundic acid stimulates the human GLAST ortholog, EAAT1, expression in human neuroglioblastoma cells. Thus, discovering compounds that can enhance EAAT1 expression and activity may be a novel strategy for therapeutic treatment of glaucoma.
    Cell Death & Disease 03/2015; 6(3):e1693. DOI:10.1038/cddis.2015.45 · 5.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glutamate transporters control the glutamate homeostasis in the central nervous system, and, thus, are not only crucial for physiological excitatory synaptic signaling, but also for the prevention of a large number of neurodegenerative diseases that are associated with excessive and prolonged presence of the neurotransmitter glutamate in the extracellular space. Until now, five subtypes of high-affinity glutamate transporters (excitatory amino acid transporters, EAATs 1–5) have been identified. These 5 high-affinity glutamate transporter subtypes belong to the solute carrier 1 (SLC1) family of transmembrane proteins: EAAT1/GLAST (SLC1A3), EAAT2/GLT1 (SLC1A2), EAAT3/EAAC1 (SLC1A1), EAAT4 (SLC1A6) and EAAT5 (SLC1A7). EAATs are secondary-active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the co-transport of Na + ions and the counter-transport of one K + in a step independent of the glutamate translocation step. Due to the electrogenicity of transport, the transmembrane potential can also act as driving force. Glutamate transporters are also able to run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. The EAAT protein family are structurally expected to be highly similar, however, these transporters show a functional diversity that ranges from high capacity glutamate uptake systems (EAATs 1–3) to receptor-like glutamate activated anion channels (EAATs 4–5). Here, we provide an update on most recent progress made on EAAT's molecular transport mechanism, structure-function relationships, pharmacology, and will add recent insights into mechanism of rapid membrane trafficking of glutamate transporters.
    AIMS Journal 09/2014; 1(3):99-125. DOI:10.3934/molsci.2014.3.99
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes are the predominant glial type in the central nervous system and play important roles in assisting neuronal function and network activity. Astrocytes exhibit complex signaling systems that are essential for their normal function and the homeostasis of the neural network. Altered signaling in astrocytes is closely associated with neurological and psychiatric diseases, suggesting tremendous therapeutic potential of these cells. To further understand astrocyte function in health and disease, it is important to study astrocytic signaling in vivo. In this review, we discuss molecular tools that enable the selective manipulation of astrocytic signaling, including the tools to selectively activate and inactivate astrocyte signaling in vivo. Lastly, we highlight a few tools in development that present strong potential for advancing our understanding of the role of astrocytes in physiology, behavior, and pathology.
    Frontiers in Cellular Neuroscience 04/2015; 9:144. DOI:10.3389/fncel.2015.00144 · 4.18 Impact Factor