New SMS missense mutation leads to a striking reduction in spermine synthase protein function and a severe form of Snyder-Robinson XLMR syndrome

Centro de Estudos do Genoma Humano, Instituto de Bioc, Brazil.
Journal of Medical Genetics (Impact Factor: 6.34). 07/2008; 45(8):539-43. DOI: 10.1136/jmg.2007.056713
Source: PubMed


We report the identification of a novel mutation at a highly conserved residue within the N-terminal region of spermine synthase (SMS) in a second family with Snyder-Robinson X-linked mental retardation syndrome (OMIM 309583). This missense mutation, p.G56S, greatly reduces SMS activity and leads to severe epilepsy and cognitive impairment. Our findings contribute to a better delineation and expansion of the clinical spectrum of Snyder-Robinson syndrome, support the important role of the N-terminus in the function of the SMS protein, and provide further evidence for the importance of SMS activity in the development of intellectual processing and other aspects of human development.

17 Reads
  • Source
    • "SMS (OMIM: 300105) is an enzyme converting spermidine (SPD) into spermine (SPM) both of which are two polyamines controlling normal mammalian cell growth and development [152–155]. The importance of SMS for the normal function is illustrated by the fact that three clinical missense mutations, c.267G > A (p.G56S) [150], c.496T > G (p.V132G) [151], and I150T [5], on SMS will cause an X-Linked mental retardation disorder named SRS (OMIM: 309583). At the same time, the 3D structures of human SMS with either the substrates SPD or product SPM have been experimentally determined [156]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Single-point mutation in genome, for example, single-nucleotide polymorphism (SNP) or rare genetic mutation, is the change of a single nucleotide for another in the genome sequence. Some of them will produce an amino acid substitution in the corresponding protein sequence (missense mutations); others will not. This paper focuses on genetic mutations resulting in a change in the amino acid sequence of the corresponding protein and how to assess their effects on protein wild-type characteristics. The existing methods and approaches for predicting the effects of mutation on protein stability, structure, and dynamics are outlined and discussed with respect to their underlying principles. Available resources, either as stand-alone applications or webservers, are pointed out as well. It is emphasized that understanding the molecular mechanisms behind these effects due to these missense mutations is of critical importance for detecting disease-causing mutations. The paper provides several examples of the application of 3D structure-based methods to model the effects of protein stability and protein-protein interactions caused by missense mutations as well.
    Computational and Mathematical Methods in Medicine 04/2012; 2012(7):805827. DOI:10.1155/2012/805827 · 0.77 Impact Factor
  • Source

  • [Show abstract] [Hide abstract]
    ABSTRACT: Male gyro (Gy) mice, which have an X chromosomal deletion inactivating the SpmS and Phex genes, were found to be profoundly hearing impaired. This defect was due to alteration in polyamine content due to the absence of spermine synthase, the product of the SpmS gene. It was reversed by breeding the Gy strain with CAG/SpmS mice, a transgenic line that ubiquitously expresses spermine synthase under the control of a composite cytomegalovirus-IE enhancer/chicken beta-actin promoter. There was an almost complete loss of the endocochlear potential in the Gy mice, which parallels the hearing deficiency, and this was also reversed by the production of spermine from the spermine synthase transgene. Gy mice showed a striking toxic response to treatment with the ornithine decarboxylase inhibitor alpha-difluoromethylornithine (DFMO). Within 2-3 days of exposure to DFMO in the drinking water, the Gy mice suffered a catastrophic loss of motor function resulting in death within 5 days. This effect was due to an inability to maintain normal balance and was also prevented by the transgenic expression of spermine synthase. DFMO treatment of control mice or Gy-CAG/SpmS had no effect on balance. The loss of balance in Gy mice treated with DFMO was due to inhibition of polyamine synthesis because it was prevented by administration of putrescine. Our results are consistent with a critical role for polyamines in regulation of Kir channels that maintain the endocochlear potential and emphasize the importance of normal spermidine:spermine ratio in the hearing and balance functions of the inner ear.
    Journal of Biological Chemistry 12/2008; 284(2):930-7. DOI:10.1074/jbc.M807758200 · 4.57 Impact Factor
Show more

Similar Publications