Article

Octaarginine- and octalysine-modified nanoparticles have different modes of endosomal escape.

Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8012, Japan.
Journal of Biological Chemistry (Impact Factor: 4.6). 07/2008; 283(34):23450-61. DOI: 10.1074/jbc.M709387200
Source: PubMed

ABSTRACT The present study examines the role of surface modification with an octaarginine peptide (R8) in liposomal escape from endocytic vesicles, using octalysine (K8) as a control cationic peptide; the mechanism of endosomal escape of liposomes was also investigated. Gene expression of condensed plasmid DNA encapsulated in R8-modified nanoparticles was more than 1 order of magnitude higher than that of K8-modified nanoparticles, and 2 orders of magnitude higher than gene expression using unmodified nanoparticles. The difference in gene expression could not be attributed to differences in uptake, as R8- and K8-modified liposomes were taken up primarily via macropinocytosis with comparable efficiency. The extent of R8-nanoparticle escape to the cytosol was double that of K8-nanoparticles. Suppression of endosome acidification inhibited R8-nanoparticle endosomal escape, but enhanced that of K8-nanoparticles. Using spectral imaging in live cells, we showed that R8- and K8-liposomes escaped from endocytic vesicles via fusion between the liposomes and the endosomal membrane. R8-liposomes fused efficiently at both acidic and neutral pH, whereas K8-liposomes fused only at neutral pH. Similar behavior was observed during in vitro lipid mixing and calcein-release experiments. Co-incubation of cells with distinctly labeled K8- and R8-modified nanoparticles confirmed a common uptake pathway and different rates of endosomal escape particularly at longer time intervals. Therefore, it was concluded that R8 on the liposome surface stimulates efficient escape from endocytic vesicles via a fusion mechanism that works at both neutral and acidic pH; in contrast, K8 mediates escape mainly at neutral pH.

0 Bookmarks
 · 
141 Views
  • Source
    Frontiers of Chemical Science and Engineering. 01/2015; 8(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is anticipated that nucleic acid medicines will be in widespread use in the future, since they have the potential to cure diseases based on molecular mechanisms at the level of gene expression. However, intelligent delivery systems are required to achieve nucleic acid therapy, since they can perform their function only when they reach the intracellular site of action. We have been developing a multifunctional envelope-type nanodevice abbreviated as MEND, which consists of functional nucleic acids as a core and lipid envelope, and can control not only biodistribution but also the intracellular trafficking of nucleic acids. In this chapter, we review the development and evolution of the MEND by providing several successful examples, including the R8-MEND, the KALA-MEND, the MITO-Porter, the YSK-MEND, and the PALM.
    Advances in genetics. 01/2014; 88:139-204.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA therapy for cancer requires efficient, selective and safe DNA delivery systems. Compared with other non-viral methods such as lipid or polymer-based DNA delivery vectors, peptide-based DNA delivery systems are biocompatible and biodegradable, which leads to lower immunogenicity and lower toxicity. Moreover, peptide vectors are easier to produce and their compositions easier to control because solid-phase peptide synthesis has been extensively developed. However, peptide-based systems for DNA delivery toward special tumor cells or tissues are still lacking. In this study, we constructed a non-viral 9rR-LTVSPWY peptide-based DNA delivery system and showed that it is able to efficiently and selectively transfect DNA into targeted tumor cells. This work presents a novel strategy for tumor cell-specific DNA delivery and a reference for designing more efficient DNA delivery systems targeted towards various types of cancer.
    PLoS ONE 10/2014; 9(10):e110632. · 3.53 Impact Factor