Immunomodulator effect of picroliv and its potential in treatment against resistant Plasmodium yoelii (MDR) infection in mice.

Department of Biochemistry, J. N. Medical College, Aligarh Muslim University, Aligarh, India.
Pharmaceutical Research (Impact Factor: 3.95). 07/2008; 25(10):2312-9. DOI: 10.1007/s11095-008-9631-2
Source: PubMed

ABSTRACT The present study was envisaged to evaluate potential of combination therapy comprising of immunomodulator picroliv and antimalarial chloroquine against drug resistant Plasmodium yoelii (P. yoelii) infection in BALB/c mice.
The immunomodulatory potential of picroliv was established by immunizing animals with model antigen along with picroliv. Immune response was assessed using T-cell proliferation assay and also by determining the antibody isotype-profile induced in the immunized mice. In the next set of experiment, prophylactic potential of picroliv to strengthen antimalarial properties of chloroquine against P. yoelii (MDR) infection in BALB/c mice was assessed.
T-cell proliferation as well as antibody production study reveals that picroliv helps in evoking strong immuno-potentiating response against model antigen in the immunized mice. Co-administration of picroliv enhances efficacy of CHQ against experimental murine malaria.
The activation of host immune system can increase the efficacy of chloroquine for suppression of drug resistant malaria infection in BALB/c mice.

Download full-text


Available from: Vishal Kumar Soni, Jun 17, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The objective of this study was to explore the immunomodulatory effect of khat and its active component, cathinone, using mice. Materials and methods: Female Swiss albino mice aged 7–8 weeks weighing 25-30 g were used in the study. Mice were randomized into eight groups of 6 each and oral treatment of khat crude extract and cathinone were given daily for four weeks. Physical, hematological, biochemical, and immunological parameters were measured. Immunological studies included humeral immunity (IgG and IgM), cellular immune response (delay type hypersensitivity), phagocytic activities of reticuloendothelial system, and determination of T-lymphocyte population: CD3+, CD4+, CD8+ count and CD4+/CD8+ status. Results: Findings of this study showed that, khat and its major metabolite, cathinone, can positively affect immune system in dose dependent manner. When doses of crude khat extract and cathinone increase, the induction of humeral (IgG and IgM) and cellular immune responses were up-regulated significantly (P < 0.05), while at higher dose of khat (200 mg/kg) cellular immune response was suppressed. In support of this, as doses of the two test substances increased, the count of T helper cells (CD4+) was significantly increased (P < 0.05), while higher dose significantly reduced whole white blood cell (WBC), CD8+, and CD3+ counts. Conclusion: At relatively lower dose (50-100 mg/kg), crude khat extract has immune stimulating property, although higher dose (200 mg/kg) leads to suppression of cellular immune response. Cathinone also share all immune modulating property of its parent compound, khat, but with intense strength. Thus, it calls for further detailed investigation of khat for practical application of the same in human medication. Keywords: CD4+, CD8+, Humeral immunity, Lymphocyte, Phagocytic index, WBC
    BMC Immunology 02/2015; 16(9). DOI:10.1186/s12865-015-0072-5 · 2.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The aim of the study was to investigate the effects of dietary combination of Nigella sativa seed and oil extracts with chloroquine (CQ), and how these combinations enhance CQ efficacy in mice infected with Plasmodium berghei and their survival rates. Materials and Methods: Chloroquine sensitive P. berghei, NK65 strain was used for the study. This was passaged intraperitoneally into albino mice with a 0.2ml standard inoculum consisting of 10 6 parasitized erythrocyte suspension in phosphate buffer solution (PBS). Parasitaemia was ascertained by microscopical examination of blood films under oil immersion at X100 magnification. Results: Nigella sativa seed in feed (NSSF), NSSF + CQ on day 4, produced 86.1% and 86.0% suppression respectively, while Nigella sativa oil extract in feed (NSOF) and in combination with CQ had 86.0% and 99.9% suppression respectively. The degree of suppression with the combination was significantly higher compared to CQ alone (P < 0.001) (36.1%). Complete parasitaemia clearance was obtained on the 20 th and 15 th day of treatment for NSSF, NSSF + CQ respectively, while that for NSOF and NSOF + CQ was on days 26 and 12 respectively. For CQ parasite clearance was 12 days with treatment. Also, the combinastion of 10 mg/kg Nigella sativa oil treatment injected intraperitoneally with oral CQ produced very significant parasite suppression (P < 0.0001) (93%). Survival rate in NSSF and NSOF and in combination with CQ groups was 100 and 60.0% for CQ alone. Conclusion : sThis study shows that the use of Nigella sativa seed and oil extract as dietary supplements in combination with CQ has a potential in enhancing the efficacy of CQ and could be of benefit in management of malaria.
    Pharmacognosy Magazine 05/2014; 2014(10):357-62. DOI:10.4103/0973-1296.133282 · 1.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND : In traditional medicine whole plants or mixtures of plants are used rather than isolated compounds. There is evidence that crude plant extracts often have greater in vitro or/and in vivo antiplasmodial activity than isolated constituents at an equivalent dose. The aim of this paper is to review positive interactions between components of whole plant extracts, which may explain this. METHODS : Narrative review. RESULTS : There is evidence for several different types of positive interactions between different components of medicinal plants used in the treatment of malaria. Pharmacodynamic synergy has been demonstrated between the Cinchona alkaloids and between various plant extracts traditionally combined. Pharmacokinetic interactions occur, for example between constituents of Artemisia annua tea so that its artemisinin is more rapidly absorbed than the pure drug. Some plant extracts may have an immunomodulatory effect as well as a direct antiplasmodial effect. Several extracts contain multidrug resistance inhibitors, although none of these has been tested clinically in malaria. Some plant constituents are added mainly to attenuate the side-effects of others, for example ginger to prevent nausea. CONCLUSIONS : More clinical research is needed on all types of interaction between plant constituents. This could include clinical trials of combinations of pure compounds (such as artemisinin + curcumin + piperine) and of combinations of herbal remedies (such as Artemisia annua leaves + Curcuma longa root + Piper nigum seeds). The former may enhance the activity of existing pharmaceutical preparations, and the latter may improve the effectiveness of existing herbal remedies for use in remote areas where modern drugs are unavailable.
    Malaria Journal 03/2011; 10 Suppl 1(Suppl 1):S4. DOI:10.1186/1475-2875-10-S1-S4 · 3.49 Impact Factor