Article

Complete loss of post-translational modifications triggers fibrillar aggregation of SOD1 in the familial form of amyotrophic lateral sclerosis.

Laboratory for Structural Neuropathology, Yamanaka Research Unit, RIKEN Brain Science Institute, Wako, Saitama, Japan.
Journal of Biological Chemistry (Impact Factor: 4.6). 07/2008; 283(35):24167-76. DOI: 10.1074/jbc.M802083200
Source: PubMed

ABSTRACT Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) cause a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. A growing body of evidence suggests that fALS-causing mutations destabilize the native structure of SOD1, leading to aberrant protein interactions for aggregation. SOD1 becomes stabilized and enzymatically active after copper and zinc binding and intramolecular disulfide formation, but it remains unknown which step(s) in the SOD1 maturation process is important in the pathological aggregation. In this study we have shown that apoSOD1 without disulfide is the most facile state for formation of amyloid-like fibrillar aggregates. fALS mutations impair either zinc binding, disulfide formation, or both, leading to accumulation of the aggregation-prone, apo, and disulfide-reduced SOD1. Moreover, we have found that the copper chaperone for SOD1 (CCS) facilitates maturation of SOD1 and that CCS overexpression ameliorates intracellular aggregation of mutant SOD1 in vivo. Based on our in vivo and in vitro results, we propose that facilitation of post-translational modifications is a promising strategy to reduce SOD1 aggregation in the cell.

0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcium deregulation is a central feature among neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Calcium accumulates in the spinal and brain stem motor neurons of ALS patients triggering multiple pathophysiological processes which have been recently shown to include direct effects on the aggregation cascade of superoxide dismutase 1 (SOD1). SOD1 is a Cu/Zn enzyme whose demetalated form is implicated in ALS protein deposits, contributing to toxic gain of function phenotypes. Here we undertake a combined experimental and computational study aimed at establishing the molecular details underlying the regulatory effects of Ca2 + over SOD1 aggregation potential. Isothermal titration calorimetry indicates entropy driven low affinity association of Ca2 + ions to apo SOD1, at pH 7.5 and 37 °C. Molecular dynamics simulations denote a noticeable loss of native structure upon Ca2 + association that is especially prominent at the zinc-binding and electrostatic loops, whose decoupling is known to expose the central SOD1 β-barrel triggering aggregation. Structural mapping of the preferential apo SOD1 Ca2 + binding locations reveals that among the most frequent ligands for Ca2 + are negatively-charged gatekeeper residues located in boundary positions with respect to segments highly prone to edge-to-edge aggregation. Calcium interactions thus diminish gatekeeping roles of these residues, by shielding repulsive interactions via stacking between aggregating β-sheets, partly blocking fibril formation and promoting amyloidogenic oligomers such as those found in ALS inclusions. Interestingly, many fALS mutations occur at these positions, disclosing how Ca2 + interactions recreate effects similar to those of genetic defects, a finding with relevance to understand sporadic ALS pathomechanisms.
    Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics 11/2014; 1854(2):118-126. DOI:10.1016/j.bbapap.2014.11.005 · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis is a devastating neurodegenerative disease. The mechanism that underlies amyotrophic lateral sclerosis (ALS) pathology remains unclear, but protein inclusions are associated with all forms of the disease. Apart from pathogenic proteins, such as TDP-43 and SOD1, other proteins are associated with ALS inclusions including small heat shock proteins. However, whether small heat shock proteins have a direct effect on SOD1 aggregation remains unknown. In this study, we have examined the ability of small heat shock proteins αB-crystallin and Hsp27 to inhibit the aggregation of SOD1 in vitro. We show that these chaperone proteins suppress the increase in thioflavin T fluorescence associated with SOD1 aggregation, primarily through inhibiting aggregate growth, not the lag phase in which nuclei are formed. αB-crystallin forms high molecular mass complexes with SOD1 and binds directly to SOD1 aggregates. Our data are consistent with an overload of proteostasis systems being associated with pathology in ALS.
    Cell Stress and Chaperones 09/2012; DOI:10.1007/s12192-012-0371-1 · 2.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutant superoxide dismutase-1 (SOD1) causes amyotrophic lateral sclerosis (ALS) through a cytotoxic mechanism of unknown nature. A hallmark in ALS patients and transgenic mouse models carrying human SOD1 (hSOD1) mutations are hSOD1-immunoreactive inclusions in spinal cord ventral horns. The hSOD1 inclusions may block essential cellular functions or cause toxicity through sequestering of other proteins. Inclusions from four different transgenic mouse models were examined after density gradient ultracentrifugation. The inclusions are complex structures with heterogeneous densities and are disrupted by detergents. The aggregated hSOD1 was mainly composed of subunits that lacked the native stabilizing intra-subunit disulfide bond. A proportion of subunits formed hSOD1 oligomers or was bound to other proteins through disulfide bonds. Dense inclusions could be isolated and the protein composition was analyzed using proteomic techniques. Mutant hSOD1 accounted for half of the protein. Ten other proteins were identified. Two were cytoplasmic chaperones, four were cytoskeletal proteins, and 4 were proteins that normally reside in the endoplasmic reticulum (ER). The presence of ER proteins in inclusions containing the primarily cytosolic hSOD1 further supports the notion that ER stress is involved in ALS.
    Journal of Neurochemistry 07/2010; 114(2):408-18. DOI:10.1111/j.1471-4159.2010.06753.x · 4.24 Impact Factor