Complete loss of post-translational modifications triggers fibrillar aggregation of SOD1 in the familial form of amyotrophic lateral sclerosis.

Laboratory for Structural Neuropathology, Yamanaka Research Unit, RIKEN Brain Science Institute, Wako, Saitama, Japan.
Journal of Biological Chemistry (Impact Factor: 4.6). 07/2008; 283(35):24167-76. DOI: 10.1074/jbc.M802083200
Source: PubMed

ABSTRACT Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) cause a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. A growing body of evidence suggests that fALS-causing mutations destabilize the native structure of SOD1, leading to aberrant protein interactions for aggregation. SOD1 becomes stabilized and enzymatically active after copper and zinc binding and intramolecular disulfide formation, but it remains unknown which step(s) in the SOD1 maturation process is important in the pathological aggregation. In this study we have shown that apoSOD1 without disulfide is the most facile state for formation of amyloid-like fibrillar aggregates. fALS mutations impair either zinc binding, disulfide formation, or both, leading to accumulation of the aggregation-prone, apo, and disulfide-reduced SOD1. Moreover, we have found that the copper chaperone for SOD1 (CCS) facilitates maturation of SOD1 and that CCS overexpression ameliorates intracellular aggregation of mutant SOD1 in vivo. Based on our in vivo and in vitro results, we propose that facilitation of post-translational modifications is a promising strategy to reduce SOD1 aggregation in the cell.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease, which primarily affects motor neurons leading to progressive paralysis and death within a few years from onset. The pathological hallmark of ALS is the presence of cytoplasmic ubiquitinated protein inclusions in motor neurons and glial cells primarily in the spinal cord. While the vast majority of ALS occurs sporadically (sALS), in ~10% of cases, called familial ALS (fALS), there is clear indication of genetic inheritance. In the last decade, enormous progress was made in unravelling the aetiology of the disease, with the identification of ALS-causing mutations in new genes, as well as key molecular players involved in the origin or progression of ALS. However, much more needs to be done, as the pathogenic mechanisms triggered by a genetic or sporadic event leading to cytotoxicity and neuronal cell death are still poorly understood. The recent discoveries offer new possibilities for devising experimental animal and cellular models, which will hopefully contribute to the development of new techniques for early diagnosis and the identification of therapeutic targets for ALS. Here we review the current understanding of the aetiology, genetics, and pathogenic factors and mechanisms of ALS. We also discuss the challenges in deciphering ALS pathogenesis that result from the high complexity and heterogeneity of the disease.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that affects motor neurons. Unfortunately, effective therapeutics against this disease is still not available. Almost 20% of familial ALS (fALS) is suggested to be associated with pathological deposition of superoxide dismutase (SOD1). Evidences suggest that SOD1-containing pathological inclusions in ALS exhibit amyloid like properties. An effective strategy to combat ALS may be to inhibit amyloid formation of SOD1 using small molecules. In the present study, we observed the fibrillation of one of the premature forms of SOD1 (SOD1 with reduced disulfide) in the presence of curcumin. Using ThT binding assay, AFM, TEM images and FTIR, we demonstrate that curcumin inhibits the DTT-induced fibrillation of SOD1 and favors the formation of smaller and disordered aggregates of SOD1. The enhancement in curcumin fluorescence on the addition of oligomers and pre-fibrillar aggregates of SOD1 suggests binding of these species to curcumin. Docking studies indicate that putative binding site of curcumin may be the amyloidogenic regions of SOD1. Further, there is a significant increase in SOD1 mediated toxicity in the regime of pre-fibrillar and fibrillar aggregates which is not evident in curcumin containing samples. All these data suggest that curcumin reduces toxicity by binding to the amyloidogenic regions of the species on the aggregation pathway and blocking the formation of the toxic species. Nanoparticles of curcumin with higher aqueous solubility show similar aggregation control as that of curcumin bulk. This suggests a potential role for curcumin in the treatment of ALS.
    Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics 02/2015; 1854(5). DOI:10.1016/j.bbapap.2015.01.014 · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ALS is a fatal adult-onset motor neuron disease. Motor neurons in the cortex, brain stem and spinal cord gradually degenerate in ALS patients, and most ALS patients die within 3~5 years of disease onset due to respiratory failure. The major pathological hallmark of ALS is abnormal accumulation of protein inclusions containing TDP-43, FUS or SOD1 protein. Moreover, the focality of clinical onset and regional spreading of neurodegeneration are typical features of ALS. These clinical data indicate that neurodegeneration in ALS is an orderly propagating process, which seems to share the signature of a seeded self-propagation with pathogenic prion proteins. In vitro and cell line experimental evidence suggests that SOD1, TDP-43 and FUS form insoluble fibrillar aggregates. Notably, these protein fibrillar aggregates can act as seeds to trigger the aggregation of native counterparts. Collectively, a self-propagation mechanism similar to prion replication and spreading may underlie the pathology of ALS. In this review, we will briefly summarize recent evidence to support the prion-like properties of major ALS-associated proteins and discuss the possible therapeutic strategies for ALS based on a prion-like mechanism.
    03/2015; 24(1):1-7. DOI:10.5607/en.2015.24.1.1