Genetic analyses involving interactions between the ergosterol biosynthetic enzymes, lanosterol synthase (Erg7p) and 3-ketoreductase (Erg27p), in the yeast Saccharomyces cerevisiae.

Indiana University-Purdue University Indianapolis, Biology Department, Indianapolis, IN 46202, USA.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 06/2008; 1781(8):359-66. DOI: 10.1016/j.bbalip.2008.04.017
Source: PubMed

ABSTRACT Protein-protein interaction studies in the Saccharomyces cerevisiae ergosterol biosynthetic pathway suggest that enzymes in this pathway may act as an integrated multienzyme complex. The yeast sterol 3-ketoreductase (Erg27p) required for C-4 demethylation of sterols has previously been shown to also be required for the function of the upstream oxidosqualene cyclase/lanosterol synthase (Erg7p); thus, erg27 mutants accumulate oxidosqualenes as precursors rather than 3-ketosterones. In the present study, we have created various mutations in the ERG27 gene. These mutations include 5 C-terminal truncations, 6 internal deletions, and 32 point mutants of which 14 were obtained by site-directed mutagenesis and 18 by random mutagenesis. We have characterized these ERG27 mutations by determining the following: Erg27 and Erg7 enzyme activities, presence of Erg27p as determined by western immunoblots, ability to grow on various sterol substrates and GC sterol profiles. Mutations of the predicted catalytic residues, Y202F and K206A, resulted in the endogenous accumulation of 3-ketosterones rather than oxidosqualenes suggesting retention of Erg7 enzyme activity. This novel phenotype demonstrated that the catalytic function of Erg27p can be separated from its Erg7p chaperone ability. Other erg27 mutations resulted in proteins that were present, as determined by western immunoblotting, but unable to interact with the Erg7 protein. We also classify Erg27p as belonging to the SDR (short-chain dehydrogenase/reductase) family of enzymes and demonstrate the possibility of homo- or heterodimerization of the protein. This study provides new insights into the role of Erg27p in sterol biosynthesis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In yeast, deletion of ERG27, which encodes the sterol biosynthetic enzyme, 3-keto-reductase, results in a concomitant loss of the upstream enzyme, Erg7p, an oxidosqualene cyclase (OSC). However, this phenomenon occurs only in fungi, as mammalian Erg27p orthologues are unable to rescue yeast Erg7p activity. In this study, an erg27 mutant containing the mouse ERG27 orthologue was isolated that was capable of growing without sterol supplementation (FGerg27). GC/MS analysis of this strain showed an accumulation of squalene epoxides, 3-ketosterones, and ergosterol. This strain which was crossed to a wildtype and daughter segregants showed an accumulation of squalene epoxides as well as ergosterol indicating that the mutation entailed a leaky block at ERG7. Upon sequencing the yeast ERG7 gene an A598S alteration was found in a conserved alpha helical region. We theorize that this mutation stabilizes Erg7p in a conformation that mimics Erg27p binding. This mutation, while decreasing OSC activity still retains sufficient residual OSC activity such that the strain can function in the presence of the mammalian 3-keto reductase enzyme and no longer requires the yeast Erg27p. Because sterol biosynthesis occurs in the ER, a fusion protein was synthesized combining Erg7p and Erg28p, a resident ER protein and scaffold of the C-4 demethyation complex. Both FGerg27 and erg27 strains containing this fusion plasmid and the mouse ERG27 orthologue showed restoration of ergosterol biosynthesis with minimal accumulation of squalene epoxides. These results indicate retention of Erg7p in the ER increases its activity and suggest a novel method of regulation of ergosterol biosynthesis.
    Biochimica et Biophysica Acta 09/2012; DOI:10.1016/j.bbalip.2012.09.012 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipids play a central role in cellular function as constituents of membranes, as signaling molecules, and as storage materials. Although much is known about the role of lipids in regulating specific steps of metabolism, comprehensive studies integrating genome-wide expression data, metabolite levels, and lipid levels are currently lacking. Here, we map condition dependent regulation controlling lipid metabolism in Saccharomyces cerevisiae by measuring 5636 mRNAs, 50 metabolites, 97 lipids, and 57 (13)C-reaction fluxes in yeast using a 3-factor full-factorial design. Correlation analysis across 8 environmental conditions revealed 2279 gene expression level-metabolite/lipid relationships that characterize the extent of transcriptional regulation in lipid metabolism relative to major metabolic hubs within the cell. To query this network, we developed integrative methods for correlation of multi-omics datasets that elucidate global regulatory signatures. Our data highlight many characterized regulators of lipid metabolism and reveal that sterols are regulated more at the transcriptional level than amino acids. Beyond providing insights into the systems-level organization of lipid metabolism, we anticipate that our dataset and approach can join an emerging number of studies to be widely used for interrogating cellular systems through the combination of mathematical modeling and experimental biology.
    G3-Genes Genomes Genetics 09/2013; DOI:10.1534/g3.113.006601 · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The narrow-spectrum fungicide fenhexamid was introduced into French vineyards in 2000 to control grey mould caused by a complex of two cryptic species: Botrytis cinerea, the predominant species sensitive to fenhexamid, and Botrytis pseudocinerea, naturally resistant. Fenhexamid was suggested to inhibit the 3-ketoreductase involved at C-4 demethylation steps during ergosterol biosynthesis, as revealed by its effects on the B. cinerea sterol profile. Resistance monitoring studies have hitherto identified two B. cinerea fenhexamid-resistant phenotypes, both resulting from mutations in the erg27 gene encoding 3-ketoreductase. RESULTS: The role of 3-ketoreductase sensitivity in fungal susceptibility to fenhexamid was investigated by studying sterol profiles and microsomal 3-ketoreductase in various fungal strains. Fenhexamid does inhibit B. cinerea 3-ketoreductase activity. Erg27 mutations causing amino acid substitutions in or near the transmembrane domain strongly decrease the affinity of fenhexamid for 3-ketoreductase. Fenhexamid has very low affinities for 3-ketoreductase in inherently resistant species, whether closely related to B. cinerea, like B. pseudocinerea, or more distantly related, like Nectria haematococca. CONCLUSION: erg27 mutation and erg27 polymorphism may therefore contribute to the unfavourable binding of fenhexamid to its target, 3-ketoreductase, explaining the acquisition of fenhexamid resistance in B. cinerea and the narrow spectrum of this fungicide.© 2012 Society of Chemical Industry.
    Pest Management Science 05/2013; 69(5). DOI:10.1002/ps.3418 · 2.74 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014