Article

Insertion of membrane proteins into discoidal membranes using a cell-free protein expression approach.

Invitrogen Corporation, Carlsbad, CA 92008, USA.
Journal of Proteome Research (Impact Factor: 5.06). 07/2008; 7(8):3535-42. DOI: 10.1021/pr800265f
Source: PubMed

ABSTRACT We report a cell-free approach for expressing and inserting integral membrane proteins into water-soluble particles composed of discoidal apolipoprotein-lipid bilayers. Proteins are inserted into the particles, circumventing the need of extracting and reconstituting the product into membrane vesicles. Moreover, the planar nature of the membrane support makes the protein freely accessible from both sides of the lipid bilayer. Complexes are successfully purified by means of the apoplipoprotein component or by the carrier protein. The method significantly enhances the solubility of a variety of membrane proteins with different functional roles and topologies. Analytical assays for a subset of model membrane proteins indicate that proteins are correctly folded and active. The approach provides a platform amenable to high-throughput structural and functional characterization of a variety of traditionally intractable drug targets.

0 Bookmarks
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Incorporation of proteins in biomimetic giant unilamellar vesicles (GUVs) is one of the hallmarks towards cell models in which we strive to obtain a better mechanistic understanding of the manifold cellular processes. The reconstruction of transmembrane proteins, like receptors or channels, into GUVs is a special challenge. This procedure is essential to make these proteins accessible to further functional investigation. Here we describe a strategy combining two approaches: cell-free eukaryotic protein expression for protein integration and GUV formation to prepare biomimetic cell models. The cell-free protein expression system in this study is based on insect lysates, which provide endoplasmic reticulum derived vesicles named microsomes. It enables signal-induced translocation and posttranslational modification of de novo synthesized membrane proteins. Combining these microsomes with synthetic lipids within the electroswelling process allowed for the rapid generation of giant proteo-liposomes of up to 50μm in diameter. We incorporated various fluorescent protein-labeled membrane proteins into GUVs (the prenylated membrane anchor CAAX, the heparin-binding epithelial growth factor like factor Hb-EGF, the endothelin receptor ETB, the chemokine receptor CXCR4) and thus presented insect microsomes as functional modules for proteo-GUV formation. Single-molecule fluorescence microscopy was applied to detect and further characterize the proteins in the GUV membrane. To extent the options in the tailoring cell models toolbox, we synthesized two different membrane proteins sequentially in the same microsome. Additionally, we introduced biotinylated lipids to specifically immobilize proteo-GUVs on streptavidin-coated surfaces. We envision this achievement as an important first step toward systematic protein studies on technical surfaces.
    Biochimica et Biophysica Acta 12/2013; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Giant unilamellar vesicles (GUVs) are vesicles >1 μm in diameter that provide an environment in which the effect of a confined reaction volume on intravesicular reactions can be investigated. By synthesizing EmrE, a multidrug transporter from Escherichia coli , as a model membrane protein using a reconstituted in vitro transcription-translation system inside GUVs, we investigated the effect of a confined volume on the synthesis and membrane integration of EmrE. Flow cytometry was used to analyze multiple properties of the vesicles and to quantify EmrE synthesis inside GUVs composed of only 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. We found that EmrE was synthesized and integrated into the GUV membrane in its active form. We also found that the ratio of membrane-integrated EmrE to total synthesized EmrE increased with decreasing vesicle volume; this finding is explained by the effect of an increased surface-area-to-volume ratio in smaller vesicles. In vitro membrane synthesis inside GUVs is a useful approach to study quantitatively the properties of membrane proteins and their interaction with the membrane under cell-mimicking environments.
    ACS Synthetic Biology 12/2013; · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds.
    PLoS ONE 01/2014; 9(5):e96635. · 3.53 Impact Factor

Full-text (2 Sources)

View
38 Downloads
Available from
May 21, 2014