Topical application of a bioadhesive black raspberry gel modulates gene expression and reduces cyclooxygenase 2 protein in human premalignant oral lesions.

Department of Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State University Comprehensive Cancer Center and Solove Research Institute, Columbus, Ohio, USA.
Cancer Research (Impact Factor: 9.28). 07/2008; 68(12):4945-57. DOI: 10.1158/0008-5472.CAN-08-0568
Source: PubMed

ABSTRACT Reduced expression of proapoptotic and terminal differentiation genes in conjunction with increased levels of the proinflammatory and angiogenesis-inducing enzymes, cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS), correlate with malignant transformation of oral intraepithelial neoplasia (IEN). Accordingly, this study investigated the effects of a 10% (w/w) freeze-dried black raspberry gel on oral IEN histopathology, gene expression profiles, intraepithelial COX-2 and iNOS proteins, and microvascular densities. Our laboratories have shown that freeze-dried black raspberries possess antioxidant properties and also induce keratinocyte apoptosis and terminal differentiation. Oral IEN tissues were hemisected to provide samples for pretreatment diagnoses and establish baseline biochemical and molecular variables. Treatment of the remaining lesional tissue (0.5 g gel applied four times daily for 6 weeks) began 1 week after the initial biopsy. RNA was isolated from snap-frozen IEN lesions for microarray analyses, followed by quantitative reverse transcription-PCR validation. Additional epithelial gene-specific quantitative reverse transcription-PCR analyses facilitated the assessment of target tissue treatment effects. Surface epithelial COX-2 and iNOS protein levels and microvascular densities were determined by image analysis quantified immunohistochemistry. Topical berry gel application uniformly suppressed genes associated with RNA processing, growth factor recycling, and inhibition of apoptosis. Although the majority of participants showed posttreatment decreases in epithelial iNOS and COX-2 proteins, only COX-2 reductions were statistically significant. These data show that berry gel application modulated oral IEN gene expression profiles, ultimately reducing epithelial COX-2 protein. In a patient subset, berry gel application also reduced vascular densities in the superficial connective tissues and induced genes associated with keratinocyte terminal differentiation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Polyphenolic compounds (anthocyanins, flavonoid glycosides) in berries prevent the initiation, promotion, and progression of carcinogenesis in rat's digestive tract and esophagus, in part, via anti-inflammatory pathways. Angiogenesis has been implicated in the pathogenesis of chronic inflammation and tumorigenesis. In this study, we investigated the anti-inflammatory and anti-angiogenic effects of black raspberry extract (BRE) on two organ specific primary human intestinal microvascular endothelial cells, (HIMEC) and human esophageal microvascular endothelial cells (HEMEC), isolated from surgically resected human intestinal and donor discarded esophagus, respectively. HEMEC and HIMEC were stimulated with TNF-α/IL-1β with or without BRE. The anti-inflammatory effects of BRE were assessed based upon COX-2, ICAM-1 and VCAM-1 gene and protein expression, PGE2 production, NFκB p65 subunit nuclear translocation as well as endothelial cell-leukocyte adhesion. The anti-angiogenic effects of BRE were assessed on cell migration, proliferation and tube formation following VEGF stimulation as well as on activation of Akt, MAPK and JNK signaling pathways. BRE inhibited TNF-α/IL-1β-induced NFκB p65 nuclear translocation, PGE2 production, up-regulation of COX-2, ICAM-1 and VCAM-1 gene and protein expression and leukocyte binding in HEMEC but not in HIMEC. BRE attenuated VEGF-induced cell migration, proliferation and tube formation in both HEMEC and HIMEC. The anti-angiogenic effect of BRE is mediated by inhibition of Akt, MAPK and JNK phosphorylations. BRE exerted differential anti-inflammatory effects between HEMEC and HIMEC following TNF-α/IL-1β activation whereas demonstrated similar anti-angiogenic effects following VEGF stimulation in both cell lines. These findings may provide more insight into the anti-tumorigenic capacities of BRE in human disease and cancer. Copyright © 2014 Elsevier Inc. All rights reserved.
    Microvascular Research 10/2014; 97C:167-180. DOI:10.1016/j.mvr.2014.10.008 · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The following, from the 12th OESO World Conference: Cancers of the Esophagus, includes commentaries on laryngopharyngeal reflux as a risk factor for laryngeal cancer; the role of pepsin in laryngopharyngeal neoplasia; natural fruit and vegetable compounds for the prevention and treatment of pharyngeal and esophageal cancers; and evaluation of cranberry constituents as inhibitors of esophageal adenocarcinoma utilizing in vitro assay and in vivo models.
    Annals of the New York Academy of Sciences 09/2014; 1325(1). DOI:10.1111/nyas.12519 · 4.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three forms of confections containing black raspberries (BRB) powder were developed to provide controlled release of phytochemicals for oral disease prevention. Our objective was to investigate the impact of varying confection matrices on the release rate of BRB phytochemicals. Confections were developed and prepared. Textural properties of confections were analyzed, compared and correlated with the release rate of phytochemicals from BRB confections with in vitro dissolution test. In the results, BRB content reached 22% in hard candy and pectin-based confections and 40% in starch-based confections, respectively. Pectin- and starch-based confections retained >93% of its original anthocyanins after processing while hard candy had 59%. Starch confections showed higher G' in rheological analysis and higher hardness but lower cohesiveness and springiness in textural profile analysis than pectin confections (P < 0.05). The confection types showed different microstructure with scanning electronic microscopy (SEM). Corresponding to their physicochemical properties, confections showed fast (hard candy), intermediate (pectin confections), and slow (starch confections) release rates with a final releasing time of 90, 150, and 540 min in dissolution studies. Three confections were rated between neither like nor dislike to like slightly (n = 60). Pectin confections had the highest overall acceptance (like slightly) and 62% of subjects rated this type of confection as the most liked ones. These results indicate that delivery matrix could modulate the phytochemical release rate from BRB confection and also influence sensory preference. © 2015 Institute of Food Technologists®
    Journal of Food Science 02/2015; 80(3). DOI:10.1111/1750-3841.12808 · 1.79 Impact Factor


Available from