Article

Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy.

OncoMed Pharmaceuticals Inc., Redwood City, California, United States of America.
PLoS ONE (Impact Factor: 3.53). 02/2008; 3(6):e2428. DOI: 10.1371/journal.pone.0002428
Source: PubMed

ABSTRACT Patients generally die of cancer after the failure of current therapies to eliminate residual disease. A subpopulation of tumor cells, termed cancer stem cells (CSC), appears uniquely able to fuel the growth of phenotypically and histologically diverse tumors. It has been proposed, therefore, that failure to effectively treat cancer may in part be due to preferential resistance of these CSC to chemotherapeutic agents. The subpopulation of human colorectal tumor cells with an ESA(+)CD44(+) phenotype are uniquely responsible for tumorigenesis and have the capacity to generate heterogeneous tumors in a xenograft setting (i.e. CoCSC). We hypothesized that if non-tumorigenic cells are more susceptible to chemotherapeutic agents, then residual tumors might be expected to contain a higher frequency of CoCSC.
Xenogeneic tumors initiated with CoCSC were allowed to reach approximately 400 mm(3), at which point mice were randomized and chemotherapeutic regimens involving cyclophosphamide or Irinotecan were initiated. Data from individual tumor phenotypic analysis and serial transplants performed in limiting dilution show that residual tumors are enriched for cells with the CoCSC phenotype and have increased tumorigenic cell frequency. Moreover, the inherent ability of residual CoCSC to generate tumors appears preserved. Aldehyde dehydrogenase 1 gene expression and enzymatic activity are elevated in CoCSC and using an in vitro culture system that maintains CoCSC as demonstrated by serial transplants and lentiviral marking of single cell-derived clones, we further show that ALDH1 enzymatic activity is a major mediator of resistance to cyclophosphamide: a classical chemotherapeutic agent.
CoCSC are enriched in colon tumors following chemotherapy and remain capable of rapidly regenerating tumors from which they originated. By focusing on the biology of CoCSC, major resistance mechanisms to specific chemotherapeutic agents can be attributed to specific genes, thereby suggesting avenues for improving cancer therapy.

1 Bookmark
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interaction of stromal and tumor cells plays a dynamic role in initiating and enhancing carcinogenesis. In this study, we investigated the crosstalk between colorectal cancer (CRC) cells with stromal fibroblasts and the anti-cancer effects of curcumin and 5-Fluorouracil (5-FU), especially on cancer stem cell (CSC) survival in a 3D-co-culture model that mimics in vivo tumor microenvironment.
    PLoS ONE 09/2014; 9(9):e107514. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Resistance to tumor therapy is an unsolved problem in cancer treatment. A plethora of studies have attempted to explain this phenomenon and many mechanisms of resistance have been suggested over the last decades. The concept of cancer stem cells (CSCs), which describes tumors as hierarchically organized, has added a new level of complexity to therapy failure. CSCs are the root of cancers and resist chemo- and irradiation therapy explaining cancer recurrence even many years after the therapy ended. This review discusses briefly CSCs in cancers, gives an overview of the role of CSCs in therapy resistance, and discusses the potential means of targeting these therapy resistant tumor cells.This article is protected by copyright. All rights reserved.
    FEBS Journal 08/2014; · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aims of this study were to demonstrate the tumorigenicity of CD133+ colon cancer cells in vitro, analyze the correlations between spheroid formation and clinicopathologic variables, and screen for overexpressed genes in CD133+ colon cancer stem cells. Moreover, the aim of this study was to establish a living tumor tissue bank using surgically resected specimens. Using LoVo cell line, we isolated CD133+ cells and performed clonogenic assay and animal experiment to test tumorigenicity of CD133+ cells. Twenty-nine surgical samples were freshly collected from 27 patients who received curative or palliative surgery, and the samples were mechanically and enzymatically dissociated into single cells. We confirmed the enhanced tumorigenicity of CD133+ cells isolated from LoVo cell line both in vitro and in vivo. Of these 29 samples, 8 (28%) contained >3% CD133+ cells. Sphere formation was significantly higher in samples from patients with lymphatic invasion than in those without lymphatic invasion [54.5% (6/11) vs. 12.5% (2/16); P=0.033] and in samples containing >3% of CD133+ cells than in those containing ≤3% of CD133+ cells [36.4% (4/11) vs. 0% (0/16); P=0.019]. These findings indicate that CD133 is a valid marker for identifying cancer stem cells from fresh surgically resected colorectal cancer tissues. Furthermore, we successfully established a living tumor tissue bank using surgically resected colorectal tissues with a viability of >70%.
    Journal of gastrointestinal oncology 12/2014; 5(6):447-456.

Full-text (4 Sources)

Download
91 Downloads
Available from
May 28, 2014