Article

Short-duration-focused ultrasound stimulation of Hsp70 expression in vivo

Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
Physics in Medicine and Biology (Impact Factor: 2.92). 08/2008; 53(13):3641-60. DOI: 10.1088/0031-9155/53/13/017
Source: PubMed

ABSTRACT The development of transgenic reporter mice and advances in in vivo optical imaging have created unique opportunities to assess and analyze biological responses to thermal therapy directly in living tissues. Reporter mice incorporating the regulatory regions from the genes encoding the 70 kDa heat-shock proteins (Hsp70) and firefly luciferase (luc) as reporter genes can be used to non-invasively reveal gene activation in living tissues in response to thermal stress. High-intensity-focused ultrasound (HIFU) can deliver measured doses of acoustic energy to highly localized regions of tissue at intensities that are sufficient to stimulate Hsp70 expression. We report activation of Hsp70-luc expression using 1 s duration HIFU heating to stimulate gene expression in the skin of the transgenic reporter mouse. Hsp70 expression was tracked for 96 h following the application of 1.5 MHz continuous-wave ultrasound with spatial peak intensities ranging from 53 W cm(-2) up to 352 W cm(-2). The results indicated that peak Hsp70 expression is observed 6-48 h post-heating, with significant activity remaining at 96 h. Exposure durations were simulated using a finite-element model, and the predicted temperatures were found to be consistent with the observed Hsp70 expression patterns. Histological evaluation revealed that the thermal damage starts at the stratum corneum and extends deeper with increasing intensity. These results indicated that short-duration HIFU may be useful for inducing heat-shock expression, and that the period between treatments needs to be greater than 96 h due to the protective properties of Hsp70.

0 Followers
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene promoter activity can be studied in vivo by molecular imaging methods using reporter gene technology. Transcription of the reporter and the reported genes occurs simultaneously. However, imaging depends on reporter protein translation, stability, and cellular fate that may differ among the various proteins. A double transgenic mouse strain expressing the firefly luciferase (lucF) and fluorescent mPlum protein under the transcriptional control of the thermo-inducible heat-shock protein (Hspa1b) promoter was generated allowing to follow up the reporter proteins by different and complementary in vivo imaging technologies. These mice were used for in vivo imaging by bioluminescence and epi fluorescence reflectance imaging (BLI & FRI) and as a source of embryonic fibroblast (MEF) for in vitro approaches. LucF, mPlum and endogenous Hsp70 mRNAs were transcribed simultaneously. The increase in mRNA was transient, peaking at 3 h and then returning to the basal level about 6 h after the thermal stimulations. The bioluminescent signal was transient and initiated with a 3 h delay versus mRNA expression. The onset of mPlum fluorescence was more delayed, increasing slowly up to 30 h after heat-shock and remaining for several days. This mouse allows for both bioluminescence imaging (BLI) and fluorescence reflectance imaging (FRI) of Hsp70 promoter activation showing an early and transient lucF activity and a retrospective and persistent mPlum fluorescence. This transgenic mouse will allow following the transient local induction of Hsp-70 promoter beyond its induction time-frame and relate into subsequent dynamic biological effects of the heat-shock response.
    Biomedical Optics Express 02/2014; 5(2):457-67. DOI:10.1364/BOE.5.000457 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Detection of cellular stress is of major importance for the survival of cells. During evolution, a network of stress pathways developed, with the heat shock (HS) response playing a major role. The key transcription factor mediating HS signalling activity in mammalian cells is the HS factor HSF1. When activated it binds to the heat shock elements (HSE) in the promoters of target genes like heat shock protein (HSP) genes. They are induced by HSF1 but in addition they integrate multiple signals from different stress pathways. Here, we developed an artificial promoter consisting only of HSEs and therefore selectively reacting to HSF-mediated pathway activation. The promoter is highly inducible but has an extreme low basal level. Direct comparison with the HSPA1A promoter activity indicates that heat-dependent expression can be fully recapitulated by isolated HSEs in human cells. Using this sensitive reporter, we measured the HS response for different temperatures and exposure times. In particular, long heat induction times of 1 or 2 h were compared with short heat durations down to 1 min, conditions typical for burn injuries. We found similar responses to both long and short heat durations but at completely different temperatures. Exposure times of 2 h result in pathway activation at 41 to 44 °C, whereas heat pulses of 1 min lead to a maximum HS response between 47 and 50 °C. The results suggest that the HS response is initiated by a combination of temperature and exposure time but not by a certain threshold temperature.
    Cell Stress and Chaperones 08/2014; 20(2). DOI:10.1007/s12192-014-0540-5 · 2.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vivo and in vitro studies have demonstrated the positive role that ultrasound can play in the enhancement of fracture healing or in the reactivation of a failed healing process. We review the several options available for the use of ultrasound in this context, either to induce a direct physical effect (LIPUS, shock waves), to deliver bioactive molecules such as growth factors, or to transfect cells with osteogenic plasmids; with a main focus on LIPUS (or Low Intensity Pulsed Ultrasound) as it is the most widespread and studied technique. The biological response to LIPUS is complex as numerous cell types respond to this stimulus involving several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2, iNOS/NO pathways and activation of ATI mechanoreceptor. The mechanisms by which ultrasound can trigger these effects remain intriguing. Possible mechanisms include direct and indirect mechanical effects like acoustic radiation force, acoustic streaming, and propagation of surface waves, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. Effects caused by the transformation of acoustic wave energy into heat can usually be neglected, but heating of the transducer may have a potential impact on the stimulation in some in-vitro systems, depending on the coupling conditions. Cavitation cannot occur at the pressure levels delivered by LIPUS. In-vitro studies, although not appropriate to identify the overall biological effects, are of great interest to study specific mechanisms of action. The diversity of current experimental set-ups however renders this analysis very complex, as phenomena such as transducer heating, inhomogeneities of the sound intensity in the near field, resonances in the transmission and reflection through the culture dish walls and the formation of standing waves will greatly affect the local type and amplitude of the stimulus exerted on the cells. A future engineering challenge is therefore the design of dedicated experimental set-ups, in which the different mechanical phenomena induced by ultrasound can be controlled. This is a prerequisite to evaluate the biological effects of the different phenomena with respect to particular parameters, like intensity, frequency, or duty cycle. By relating the variations of these parameters to the induced physical effects and to the biological responses, it will become possible to derive an 'acoustic dose' and propose a quantification and cross-calibration of the different experimental systems. Improvements in bone healing management will probably also come from a combination of ultrasound with a 'biologic' components, e.g. growth factors, scaffolds, gene therapies, or drug delivery vehicles, the effects of which being potentiated by the ultrasound.
    Ultrasonics 01/2014; 54(5). DOI:10.1016/j.ultras.2014.01.004 · 1.81 Impact Factor

Full-text (2 Sources)

Download
63 Downloads
Available from
May 30, 2014