Complement C3 deficiency leads to accelerated amyloid beta plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice.

Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
Journal of Neuroscience (Impact Factor: 6.91). 07/2008; 28(25):6333-41. DOI: 10.1523/JNEUROSCI.0829-08.2008
Source: PubMed

ABSTRACT Complement factor C3 is the central component of the complement system and a key inflammatory protein activated in Alzheimer's disease (AD). Previous studies demonstrated that inhibition of C3 by overexpression of soluble complement receptor-related protein y in an AD mouse model led to reduced microgliosis, increased amyloid beta (Abeta) plaque burden, and neurodegeneration. To further address the role of C3 in AD pathology, we generated a complement C3-deficient amyloid precursor protein (APP) transgenic AD mouse model (APP;C3(-/-)). Brains were analyzed at 8, 12, and 17 months of age by immunohistochemical and biochemical methods and compared with age-matched APP transgenic mice. At younger ages (8-12 months), no significant neuropathological differences were observed between the two transgenic lines. In contrast, at 17 months of age, APP;C3(-/-) mice showed significant changes of up to twofold increased total Abeta and fibrillar amyloid plaque burden in midfrontal cortex and hippocampus, which correlated with (1) significantly increased Tris-buffered saline (TBS)-insoluble Abeta(42) levels and reduced TBS-soluble Abeta(42) and Abeta(40) levels in brain homogenates, (2) a trend for increased Abeta levels in the plasma, (3) a significant loss of neuronal-specific nuclear protein-positive neurons in the hippocampus, and (4) differential activation of microglia toward a more alternative phenotype (e.g., significantly increased CD45-positive microglia, increased brain levels of interleukins 4 and 10, and reduced levels of CD68, F4/80, inducible nitric oxide synthase, and tumor necrosis factor). Our results suggest a beneficial role for complement C3 in plaque clearance and neuronal health as well as in modulation of the microglia phenotype.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The intricate interactions between the immune, endocrine and central nervous systems shape the innate immune response of the brain. We have previously shown that estradiol suppresses expression of immune genes in the frontal cortex of middle-aged ovariectomized rats, but not in young ones reflecting elevated expression of these genes in middle-aged, ovarian hormone deficient animals. Here, we explored the impact of menopause on the microglia phenotype capitalizing on the differential expression of macrophage-associated genes in quiescent and activated microglia. METHODS: We selected twenty-three genes encoding phagocytic and recognition receptors expressed primarily in microglia, and eleven proinflammatory genes and followed their expression in the rat frontal cortex by real-time PCR. We used young, middle-aged and middle-aged ovariectomized rats to reveal age- and ovariectomy-related alterations. We analyzed the expression of the same set of genes in the postcentral and superior frontal gyrus of pre- and postmenopausal women using raw microarray data from our previous study. RESULTS: Ovariectomy caused up-regulation of four classic microglia reactivity marker genes including Cd11b, Cd18, Cd45 and Cd86. The change was reversible since estradiol attenuated transcriptional activation of the four marker genes. Expression of genes encoding phagocytic and toll-like receptors such as Cd11b, Cd18, C3, Cd32, Msr2 and Tlr4 increased, whereas scavenger receptor Cd36 decreased following ovariectomy. Ovarian hormone deprivation altered the expression of major components of estrogen and neuronal inhibitory signaling which are involved in the control of microglia reactivity. Strikingly similar changes took place in the postcentral and superior frontal gyrus of postmenopausal women. CONCLUSIONS: Based on the overlapping results of rat and human studies we propose that the microglia phenotype shifts from the resting toward the reactive state which can be characterized by up-regulation of CD11b, CD14, CD18, CD45, CD74, CD86, TLR4, down-regulation of CD36 and unchanged CD40 expression. As a result of this shift, microglial cells have lower threshold for subsequent activation in the forebrain of postmenopausal women.
    Journal of Neuroinflammation 12/2012; 9(1):264. · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular disorders can either be cause or consequence in the pathophysiology of Alzheimer's disease (AD). To comprehensively characterize the occurrence of vascular impairment in a double transgenic mouse model for AD (APP(swe)/PS1(dE9)) during aging, we developed a new method to obtain microvascular relative cerebral blood volume (rCBV(micro)) maps from gradient echo MR imaging by histogram evaluation and we applied a voxel-wise approach to detect rCBV(micro) changes. With this methodology the development of cerebral microvascular impairments can be described in vivo with 0.16 mm isotropic resolution for the whole mouse brain. At 8 months, impaired rCBV(micro) appeared in some cortical regions and in the thalamus, which spreads over several sub-cortical areas and the hippocampus at 13 months. With a ROI-based approach, we further showed that hippocampal rCBV(micro) in 13-month-old wild-type and APP(swe)/PS1(dE9) mice correlates well with capillary density measured with immunohistochemical staining. However, no differences in capillary density were detected between genotypes. The rCBV(micro) values showed no significant correlation with amyloid-β (Aβ) plaque deposition, Aβ at blood vessel walls and biochemically measured levels of Aβ(1-40), Aβ(1-42) oligomers and fibrillar forms. These results suggest that rCBV(micro) reduction is caused by an impaired vasoactivity of capillaries and arterioles, which is not directly correlated with the amount of Aβ deposition in parenchyma nor blood vessel walls.
    Brain Structure and Function 08/2012; · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer Disease (AD) is a neurodegenerative disorder and the most common form of dementia. Histopathologically is characterized by the presence of two major hallmarks, the intracellular neurofibrillary tangles (NFTs) and extracellular neuritic plaques (NPs) surrounded by activated astrocytes and microglia. NFTs consist of paired helical filaments of truncated tau protein that is abnormally hyperphosphorylated. The main component in the NP is the amyloid-β peptide (Aβ), a small fragment of 40-42 amino acids with a molecular weight of 4 kD. It has been proposed that the amyloid aggregates and microglia activation are able to favor the neurodegenerative process observed in AD patients. However, the role of inflammation in AD is controversial, because in early stages the inflammation could have a beneficial role in the pathology, since it has been thought that the microglia and astrocytes activated could be involved in Aβ clearance. Nevertheless the chronic activation of the microglia has been related with an increase of Aβ and possibly with tau phosphorylation. Studies in AD brains have shown an upregulation of complement molecules, pro-inflammatory cytokines, acute phase reactants and other inflammatory mediators that could contribute with the neurodegenerative process. Clinical trials and animal models with non-steroidal anti-inflammatory drugs (NSAIDs) indicate that these drugs may decrease the risk of developing AD and apparently reduce Aβ deposition. Finally, further studies are needed to determine whether treatment with anti-inflammatory strategies, may decrease the neurodegenerative process that affects these patients.
    Frontiers in Integrative Neuroscience 01/2013; 7:59.

Full-text (2 Sources)

Available from
May 16, 2014