Complement C3 deficiency leads to accelerated amyloid beta plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice.

Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
Journal of Neuroscience (Impact Factor: 6.91). 07/2008; 28(25):6333-41. DOI: 10.1523/JNEUROSCI.0829-08.2008
Source: PubMed

ABSTRACT Complement factor C3 is the central component of the complement system and a key inflammatory protein activated in Alzheimer's disease (AD). Previous studies demonstrated that inhibition of C3 by overexpression of soluble complement receptor-related protein y in an AD mouse model led to reduced microgliosis, increased amyloid beta (Abeta) plaque burden, and neurodegeneration. To further address the role of C3 in AD pathology, we generated a complement C3-deficient amyloid precursor protein (APP) transgenic AD mouse model (APP;C3(-/-)). Brains were analyzed at 8, 12, and 17 months of age by immunohistochemical and biochemical methods and compared with age-matched APP transgenic mice. At younger ages (8-12 months), no significant neuropathological differences were observed between the two transgenic lines. In contrast, at 17 months of age, APP;C3(-/-) mice showed significant changes of up to twofold increased total Abeta and fibrillar amyloid plaque burden in midfrontal cortex and hippocampus, which correlated with (1) significantly increased Tris-buffered saline (TBS)-insoluble Abeta(42) levels and reduced TBS-soluble Abeta(42) and Abeta(40) levels in brain homogenates, (2) a trend for increased Abeta levels in the plasma, (3) a significant loss of neuronal-specific nuclear protein-positive neurons in the hippocampus, and (4) differential activation of microglia toward a more alternative phenotype (e.g., significantly increased CD45-positive microglia, increased brain levels of interleukins 4 and 10, and reduced levels of CD68, F4/80, inducible nitric oxide synthase, and tumor necrosis factor). Our results suggest a beneficial role for complement C3 in plaque clearance and neuronal health as well as in modulation of the microglia phenotype.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurodegenerative diseases affect a considerable percentage of the elderly population. New therapeutic approaches are warranted, aiming to at least delay and possibly reverse disease progression. Strategies to elaborate such approaches require knowledge of specific immune system involvement in disease pathogenesis. In this review, innate and adaptive immunological aspects of neurodegenerative disorders, in particular Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis (ALS), are discussed. Initiating disease factors, as well as common mechanistic pathways, are detailed and potential immunological therapeutic targets are identified.
    Journal of neuroimmunology 10/2013; · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the past decade the process of inflammation has been a focus of increasing interest in the Alzheimer's disease (AD) field, not only for its potential role in neuronal degeneration but also as a promising therapeutic target. However, recent research in this field has provided divergent outcomes, largely due to the use of different models and different stages of the disease when the investigations have been carried out. It is now accepted that microglia, and possibly astrocytes, change their activation phenotype during ageing and the stage of the disease, and therefore these are important factors to have in mind to define the function of different inflammatory components as well as potential therapies. Modulating inflammation using animal models of AD has offered the possibility to investigate inflammatory components individually and manipulate inflammatory genes in amyloid precursor protein and tau transgenics independently. This has also offered some hints on the mechanisms by which these factors may affect AD pathology. In this review we examine the different transgenic approaches and treatments that have been reported to modulate inflammation using animal models of AD. These studies have provided evidence that enhancing inflammation is linked with increases in amyloid-beta (Abeta) generation, Abeta aggregation and tau phosphorylation. However, the alterations on tau phosphorylation can be independent of changes in Abeta levels by these inflammatory mediators.
    Journal of Neuroinflammation 02/2014; 11(1):25. · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a major public health problem with substantial economic and social impacts around the world. The hallmarks of AD pathogenesis include deposition of amyloid beta (Abeta), neurofibrillary tangles, and neuroinflammation. For many years, research has been focused on Abeta accumulation in senile plaques, as these aggregations were perceived as the main cause of the neurodegeneration found in AD. However, increasing evidence suggests that inflammation also plays a critical role in the pathogenesis of AD. Microglia cells are the resident macrophages of the brain and act as the first line of defense in the central nervous system. In AD, microglia play a dual role in disease progression, being essential for clearing Abeta deposits and releasing cytotoxic mediators. Abeta activates microglia through a variety of innate immune receptors expressed on these cells. The mechanisms through which amyloid deposits provoke an inflammatory response are not fully understood, but it is believed that these receptors cooperate in the recognition, internalization, and clearance of Abeta and in cell activation. In this review, we discuss the role of several receptors expressed on microglia in Abeta recognition, uptake, and signaling, and their implications for AD pathogenesis.
    Journal of Neuroinflammation 03/2014; 11(1):48. · 4.35 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014