Article

Protoporphyrin IX fluorescence photobleaching is a useful tool to predict the response of rat ovarian cancer following hexaminolevulinate photodynamic therapy.

Department of Gynecology and Obstetrics, Lille University Hospital, Lille, France.
Lasers in Surgery and Medicine (Impact Factor: 2.46). 06/2008; 40(5):332-41. DOI: 10.1002/lsm.20629
Source: PubMed

ABSTRACT Accurate dosimetry was shown to be critical to achieve effective photodynamic therapy (PDT). This study aimed to assess the reliability of in vivo protoporphyrin IX (PpIX) fluorescence photobleaching as a predictive tool of the hexaminolevulinate PDT (HAL-PDT) response in a rat model of advanced ovarian cancer.
Intraperitoneal 10(6) NuTu 19 cells were injected in 26 female rats Fisher 344. Peritoneal carcinomatosis was obtained 26 days post-tumor induction. Four hours post-intraperitoneal HAL (Photocure ASA, Oslo, Norway) injection, a laparoscopic procedure (D-light AutoFluorescence system, Karl Storz endoscope, Tuttlingen, Germany) and a fluorescence examination were made for 22 rats. The first group (LASER group, n=26) was illuminated with laser light using a 532 nm KTP laser (Laser Quantum, Stockport, UK) on 1 cm(2) surface at 45 J/cm(2). The second group (NO LASER group, n=26) served as controls. Biopsies were taken 24 hours after PDT. Semi-quantitative histology was performed and necrosis value was determined: 0--no necrosis to 4--full necrosis. Fluorescence was monitored before and after illumination on complete responders (NV=3-4; n=20) and non-responders (NV=0-2; n=6).
High PpIX photobleaching corresponded with complete responders whereas low photobleaching corresponded with non-responders (P<0.05). A direct linear correlation was shown between photobleaching and necrosis (R(2)=0.89).
In vivo PpIX fluorescence photobleaching is useful to predict the tissue response to HAL-PDT.

0 Bookmarks
 · 
85 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to compare the inhibitory effects of photosensitizers loaded in hollow silica nanoparticles and conventional photosensitizers on HepG2 human hepatoma cell proliferation and determine the underlying mechanisms. Photosensitizers (conventional Photosan-II or nanoscale Photosan-II) were administered to in vitro cultured HepG2 hepatoma cells and treated by photodynamic therapy (PDT) with various levels of light exposure. To assess photosensitizers' effects, cell viability was determined by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, apoptotic and necrotic cells were measured by flow cytometry and the expression of caspase-3 and caspase-9 evaluated by western blot. Finally, the in vivo effects of nanoscale and conventional photosensitizers on liver cancer were assessed in nude mice. Nanoscale Photosan-II significantly inhibited hepatoma cell viability in a concentration-dependent manner and this effect was more pronounced with high laser doses. Moreover, nanoscale photosensitizers performed better than the conventional ones under the same experimental conditions (p < 0.05). Flow cytometry data demonstrated that laser-induced cell death was markedly increased after treatment with nanoscale Photosan-II in comparison with free Photosan-II (p < 0.05). Activated caspase-3 and caspase-9 levels were significantly higher in cells treated with Photosan-II loaded in silica nanoparticles than free Photosan-II (p < 0.05). Accordingly, treatment with nanoscale photosensitizers resulted in improved outcomes (tumor volume) in a mouse model of liver cancer, in comparison with conventional photosensitizers. Hollow silica nanoparticles containing photosensitizer more efficiently inhibited hepatoma cells than photosensitizer alone, through induction of apoptosis, both in vivo and in vitro.
    Nanoscale Research Letters 01/2014; 9(1):319. · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Common methods to characterize treatment efficacy based on morphological imaging may misrepresent outcomes and exclude effective therapies. Using a three-dimensional model of ovarian cancer, two functional treatment response metrics are used to evaluate photodynamic therapy (PDT) efficacy: total volume, calculated from viable and nonviable cells, and live volume, calculated from viable cells. The utility of these volume-based metrics is corroborated using independent reporters of photodynamic activity: viability, a common fluorescence-based ratiometric analysis, and photosensitizer photobleaching, which is characterized by a loss of fluorescence due in part to the production of reactive species during PDT. Live volume correlated with both photobleaching and viability, suggesting that it was a better reporter of PDT efficacy than total volume, which did not correlate with either metric. Based on these findings, live volume and viability are used to probe the susceptibilities of tumor populations to a range of PDT dose parameters administered using 0.25, 1, and 10 μM benzoporphyrin derivative (BPD). PDT with 0.25 μM BPD produces the most significant reduction in live volume and viability and mediates a substantial shift toward small nodules. Increasingly sophisticated bioengineered models may complement current treatment planning approaches and provide unique opportunities to critically evaluate key parameters including metrics of therapeutic response.
    Journal of Biomedical Optics 09/2013; 18(9):98004. · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer is one of the most significant pathologies in the field of urology. The adoption of screening strategies and improvements in biopsies have resulted in an increase in early-stage tumour detection. Radical global therapies provide very good oncological results in localised prostate cancer. However, excess treatment in low- and, in some cases, intermediate-risk groups affects the quality of life of these patients. In the case of localised prostate cancer, focal therapies offer a minimally invasive option with good results with respect to established treatments. Although this is currently not a standard treatment, it represents the therapeutic approach with the greatest potential. THIS LITERATURE REVIEW HAS THE FOLLOWING OBJECTIVES: to define selection criteria for patients who are candidates for focal therapy, to assess the current situation and results of the different therapeutic options, and to define procedures in cases of recurrence and for follow-ups. We concluded that focal therapy is a viable therapeutic alternative for localised prostate cancer, specifically cryosurgery and high-intensity targeted ultrasound, which have acceptable oncologic results and a lower comorbidity compared with global treatments. Studies with a high level of scientific evidence are still needed to validate these results.
    ecancermedicalscience 01/2014; 8:435.