Article

Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma.

Department of Urology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
The Journal of Immunology (Impact Factor: 5.52). 08/2008; 181(1):346-53.
Source: PubMed

ABSTRACT Metastatic renal cell carcinoma (RCC) associates with overproduction of vascular endothelial growth factor (VEGF) due to the mutation/inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene. Herein we demonstrate that implantation of human RCC tumor cells into athymic nude mice promotes the appearance of VEGF receptor 1 (VEGFR1)/CD11b double-positive myeloid cells in peripheral blood. Avastin-mediated VEGF neutralization was capable of significantly reducing the numbers of circulating VEGFR1+ myeloid cells. Conversely, up-regulation of VEGFR1 by myeloid cells could also be achieved in vitro by coculturing bone marrow cells with RCC-conditioned medium or by short-term exposure of naive myeloid cells to oxidative stress. Treatment of myeloid cells with H2O2, lipid peroxidation product 4-hydroxy-2(E)-nonenal, or an inhibitor of thioredoxin reductase all resulted in increased expression of VEGFR1. Furthermore, after exposure to oxidative stress, myeloid cells acquire immunosuppressive features and become capable of inhibiting T cell proliferation. Data suggest that tumor-induced oxidative stress may promote both VEGFR1 up-regulation and immunosuppressive function in bone marrow-derived myeloid cells. Analysis of tumor tissue and peripheral blood from patients with metastatic RCC revealed that VEGFR1+ cells can be also found in cancer patients. Restoration of immunocompetence in metastatic RCC patients by pharmacological elimination of VEGFR1+ cells may have a significant impact on the therapeutic efficacy of cancer vaccines or other immune-based therapies.

0 Bookmarks
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) are central to the adoptive immune response, and their function is regulated by diverse signals in a context-specific manner. Different DCs have been described in physiologic conditions, inflammation, and cancer, prompting a series of questions on how adoptive immune responses, or tolerance, develop against tumors. Increasing evidence suggests that tumor treatments induce a dramatic change on tumor-infiltrating lymphocytes and, in particular, on some DC subtypes. In this review, we summarize the latest evidence on the role of DCs in cancer and preliminary evidence on chemotherapy-associated antigens identified in human cancers.
    Frontiers in Immunology 01/2014; 4:503.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The progressive conversion of normal cells into cancer cells is characterized by the acquisition of eight hallmarks. Among these criteria, the capability of the cancer cell to avoid the immune destruction has been noted. Thus, tumors develop mechanisms to become invisible to the immune system, such as the induction of immunosuppressive cells, which are able to inhibit the development of an efficient immune response. Molecules produced in the tumor microenvironment are involved in the occurrence of an immunosuppressive microenvironment. Recently, it has been shown that vascular endothelial growth factor A (VEGF-A) exhibits immunosuppressive properties in addition to its pro-angiogenic activities. VEGF-A can induce the accumulation of immature dendritic cells, myeloid-derived suppressor cells, regulatory T cells, and inhibit the migration of T lymphocytes to the tumor. Other pro-angiogenic factors such as placental growth factor (PlGF) could also participate in tumor-induced immunosuppression, but only few works have been performed on this point. Here, we review the impact of pro-angiogenic factors (especially VEGF-A) on immune cells. Anti-angiogenic molecules, which target VEGF-A/VEGFR axis, have been developed in the last decades and are commonly used to treat cancer patients. These drugs have anti-angiogenic properties but can also counteract the tumor-induced immunosuppression. Based on these immunomodulatory properties, anti-angiogenic molecules could be efficiently associated with immunotherapeutic strategies in preclinical models. These combinations are currently under investigation in cancer patients.
    Frontiers in Oncology 01/2014; 4:70.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells are an important target in cancer immunotherapy based on their critical role in antigen presentation and response to tumor development. The capacity of dendritic cells to stimulate anti-tumor immunity has led investigators to use these cells to mediate anti-tumor responses in a number of clinical trials. However, these trials have had mixed results. The typical method for generation of ex vivo dendritic cells starts with the purification of CD14(+) cells. Our studies identified a deficiency in the ability to generate mature dendritic cell using CD14(+) cells from cancer patients that corresponded with an increased population of monocytes with altered surface marker expression (CD14(+)HLA-DR(lo/neg)). Further studies identified systemic immune suppression and increased concentrations of CD14(+)HLA-DR(lo/neg) monocytes capable of inhibiting T-cell proliferation and DC maturation. Together, these findings strongly suggest that protocols aimed at immune stimulation via monocytes/dendritic cells, if optimized on normal monocytes or in systems without these suppressive monocytes, are unlikely to engender effective DC maturation in vitro or efficiently trigger DC maturation in vivo. This highlights the importance of developing optimal protocols for stimulating DCs in the context of significantly altered monocyte phenotypes often seen in cancer patients.
    Frontiers in Immunology 01/2014; 5:147.

Full-text

View
7 Downloads
Available from
May 16, 2014