Article

Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins.

Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6307, USA.
Journal of Clinical Investigation (Impact Factor: 13.77). 08/2008; 118(7):2609-19. DOI: 10.1172/JCI34588
Source: PubMed

ABSTRACT Although some cancers are initially sensitive to EGFR tyrosine kinase inhibitors (TKIs), resistance invariably develops. We investigated mechanisms of acquired resistance to the EGFR TKI gefitinib by generating gefitinib-resistant (GR) A431 squamous cancer cells. In GR cells, gefitinib reduced phosphorylation of EGFR, ErbB-3, and Erk but not Akt. These cells also showed hyperphosphorylation of the IGFI receptor (IGFIR) and constitutive association of IRS-1 with PI3K. Inhibition of IGFIR signaling disrupted the association of IRS-1 with PI3K and restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit GR cell growth. Gene expression analyses revealed that GR cells exhibited markedly reduced IGF-binding protein 3 (IGFBP-3) and IGFBP-4 RNA. Addition of recombinant IGFBP-3 restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit cell growth. Finally, gefitinib treatment of mice with A431 xenografts in combination with an IGFIR-specific monoclonal antibody prevented tumor recurrence, whereas each drug given alone was unable to do so. These data suggest that loss of expression of IGFBPs in tumor cells treated with EGFR TKIs derepresses IGFIR signaling, which in turn mediates resistance to EGFR antagonists. Moreover, combined therapeutic inhibition of EGFR and IGFIR may abrogate this acquired mechanism of drug resistance and is thus worthy of prospective clinical investigation.

0 Followers
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phosphoinositide 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling network is a master regulator of processes that contribute to tumorigenesis and tumor maintenance. The PI3K pathway also plays a critical role in driving resistance to diverse anti-cancer therapies. This review article focuses on mechanisms by which the PI3K pathway contributes to therapy resistance in cancer, and highlights potential combination therapy strategies to circumvent resistance driven by PI3K signaling. In addition, resistance mechanisms that limit the clinical efficacy of small molecule inhibitors of the PI3K pathway are discussed.
    02/2015; 7. DOI:10.12703/P7-13
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among patients with colorectal cancer who benefit from therapy targeted to the epidermal growth factor receptor (EGFR), stable disease (SD) occurs more frequently than massive regressions. Exploring the mechanisms of this incomplete sensitivity to devise more efficacious treatments will likely improve patients' outcomes. We tested therapies tailored around hypothesis-generating molecular features in patient-derived xenografts ("xenopatients"), which originated from 125 independent samples that did not harbor established resistance-conferring mutations. Samples from xenopatients that responded to cetuximab, an anti-EGFR agent, with disease stabilization displayed high levels of EGFR family ligands and receptors, indicating high EGFR pathway activity. Five of 21 SD models (23.8%) characterized by particularly high expression of EGFR and EGFR family members regressed after intensified EGFR blockade by cetuximab and a small-molecule inhibitor. In addition, a subset of cases in which enhanced EGFR inhibition was unproductive (6 of 16, 37.5%) exhibited marked overexpression of insulin-like growth factor 2 (IGF2). Enrichment of IGF2 overexpressors among cases with SD was demonstrated in the entire xenopatient collection and was confirmed in patients by mining clinical gene expression data sets. In functional studies, IGF2 overproduction attenuated the efficacy of cetuximab. Conversely, interception of IGF2-dependent signaling in IGF2-overexpressing xenopatients potentiated the effects of cetuximab. The clinical implementation of IGF inhibitors awaits reliable predictors of response, but the results of this study suggest rational combination therapies for colorectal cancer and provide evidence for IGF2 as a biomarker of reduced tumor sensitivity to anti-EGFR therapy and a determinant of response to combined IGF2/EGFR targeting. Copyright © 2015, American Association for the Advancement of Science.
    Science translational medicine 01/2015; 7(272):272ra12. DOI:10.1126/scitranslmed.3010445 · 14.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The IGF-I receptor (IGF-IR) has been studied as an anti-cancer target. However, monotherapy trials with IGF-IR targeted antibodies or with IGF-IR specific tyrosine kinase inhibitors have, overall, been very disappointing in the clinical setting. This review discusses potential reasons why IGF-I R targeted therapy fails to inhibit growth of human cancers. It has become clear that intracellular signaling pathways are highly interconnected and complex instead of being linear and simple. One of the most potent candidates for failure of IGF-IR targeted therapy is the insulin receptor isoform A (IR-A). Activation of the IR-A by insulin-like growth factor-II (IGF-II) bypasses the IGF-IR and its inhibition. Another factor may be that anti-cancer treatment may reduce IGF-IR expression. IGF-IR blocking drugs may also induce hyperglycemia and hyperinsulinemia, which may further stimulate cell growth. In addition, circulating IGF-IRs may reduce therapeutic effects of IGF-IR targeted therapy. Nevertheless, it is still possible that the IGF-IR may be a useful adjuvant or secondary target for the treatment of human cancers. Development of functional inhibitors that affect the IGF-IR and IR-A may be necessary to overcome resistance and to make IGF-IR targeted therapy successful. Drugs that modify alternative downstream effects of the IGF-IR, so called "biasing agonists," should also be considered.
    Frontiers in Endocrinology 01/2014; 5:224. DOI:10.3389/fendo.2014.00224

Full-text (2 Sources)

Download
23 Downloads
Available from
May 28, 2014