Fungal Rtt109 histone acetyltransferase is an unexpected structural homolog of metazoan p300/CBP

Program in Gene Expression and Regulation, The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA.
Nature Structural & Molecular Biology (Impact Factor: 11.63). 08/2008; 15(7):738-45. DOI: 10.1038/nsmb.1448
Source: PubMed

ABSTRACT Rtt109, also known as KAT11, is a recently characterized fungal-specific histone acetyltransferase (HAT) that modifies histone H3 lysine 56 (H3K56) to promote genome stability. Rtt109 does not show sequence conservation with other known HATs and depends on association with either of two histone chaperones, Asf1 or Vps75, for HAT activity. Here we report the X-ray crystal structure of an Rtt109-acetyl coenzyme A complex and carry out structure-based mutagenesis, combined with in vitro biochemical studies of the Rtt109-Vps75 complex and studies of Rtt109 function in vivo. The Rtt109 structure reveals noteworthy homology to the metazoan p300/CBP HAT domain but exhibits functional divergence, including atypical catalytic properties and mode of cofactor regulation. The structure reveals a buried autoacetylated lysine residue that we show is also acetylated in the Rtt109 protein purified from yeast cells. Implications for understanding histone substrate and chaperone binding by Rtt109 are discussed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Saccharomyces cerevisiae, Rtt109, a lysine acetyltransferase (KAT), associates with a histone chaperone, either Vps75 or Asf1. It has been proposed that these chaperones alter the selectivity of Rtt109 or which residues it preferentially acetylates. In the present study, we utilized a label-free quantitative mass spectrometry-based method to determine the steady-state kinetic parameters of acetylation catalyzed by Rtt109-Vps75 on H3 monomer, H3/H4 tetramer, and H3/H4-Asf1 complex. These results show that among these histone conformations, only H3K9 and H3K23 are significantly acetylated under steady-state conditions and that Asf1 promotes H3/H4 acetylation by Rtt109-Vps75. Asf1 equally increases the Rtt109-Vps75 specificity for both of these residues with a maximum stoichiometry of 1:1 (Asf1 to H3/H4), but does not alter the selectivity between these two residues. These data suggest that the H3/H4-Asf1 complex is a substrate for Rtt109-Vps75 without altering selectivity between residues. The deletion of either Rtt109 or Asf1 in vivo results in the same reduction of H3K9 acetylation, suggesting that Asf1 is required for efficient H3K9 acetylation both in vitro and in vivo. Furthermore, we found that the acetylation preference of Rtt109-Vps75 could be directed to H3K56 when those histones already possess modifications, such as those found on histones purified from chicken erythrocytes. Taken together, Vps75 and Asf1 both enhance Rtt109 acetylation for H3/H4, although via different mechanisms, but have little impact on the residue selectivity. Importantly, these results provide evidence that histone chaperones can work together via interactions with either the enzyme or the substrate to more efficiently acetylate histones.
    PLoS ONE 10(3):e0118516. DOI:10.1371/journal.pone.0118516 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.
    Critical Reviews in Biochemistry and Molecular Biology 11/2014; 50(1):1-23. DOI:10.3109/10409238.2014.978975 · 5.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Penicillium marneffei is a human pathogenic fungus and the only thermally dimorphic species of the genus. At 25°C, P. marneffei grows as a mycelium that produces conidia in chains. However, when incubated at 37°C or following infection of host tissue, the fungus develops as a fission yeast. Previously, a mutant (strain I133) defective in morphogenesis was generated via Agrobacterium-mediated transformation. Specifically, the rtt109 gene (subsequently designated rttA) in this mutant was interrupted by T-DNA insertion. We characterized strain I133 and the possible roles of the mutated rttA gene in altered P. marneffei phenotypes. At 25°C, the rttA mutant produces fewer conidia than the wild type and a complemented mutant strain, as well as slower rates of conidial germination; however, strain I133 continued to grow as a yeast in 37°C-incubated cultures. Furthermore, whereas the wild type exhibited increased expression of rttA at 37°C in response to the DNA-damaging agent methyl methane sulfonate, strain I133 was hypersensitive to this and other genotoxic agents. Under similar conditions, the rttA mutant exhibited decreased expression of genes associated with carbohydrate metabolism and oxidative stress. Importantly, when compared with the wild-type and the complemented strain, I133 was significantly less virulent in a Galleria infection model when the larvae were incubated at 37°C. Moreover, the mutant exhibited inappropriate phase transition in vivo. In conclusion, the rttA gene plays important roles in morphogenesis, carbohydrate metabolism, stress response, and pathogenesis in P. marneffei, suggesting that this gene may be a potential target for the development of antifungal compounds. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail:
    Medical Mycology 12/2014; 53(2). DOI:10.1093/mmy/myu063 · 2.26 Impact Factor


Available from