Zinc alpha 2-glycoprotein: a multidisciplinary protein.

Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
Molecular Cancer Research (Impact Factor: 4.35). 07/2008; 6(6):892-906. DOI: 10.1158/1541-7786.MCR-07-2195
Source: PubMed

ABSTRACT Zinc alpha 2-glycoprotein (ZAG) is a protein of interest because of its ability to play many important functions in the human body, including fertilization and lipid mobilization. After the discovery of this molecule, during the last 5 decades, various studies have been documented on its structure and functions, but still, it is considered as a protein with an unknown function. Its expression is regulated by glucocorticoids. Due to its high sequence homology with lipid-mobilizing factor and high expression in cancer cachexia, it is considered as a novel adipokine. On the other hand, structural organization and fold is similar to MHC class I antigen-presenting molecule; hence, ZAG may have a role in the expression of the immune response. The function of ZAG under physiologic and cancerous conditions remains mysterious but is considered as a tumor biomarker for various carcinomas. There are several unrelated functions that are attributed to ZAG, such as RNase activity, regulation of melanin production, hindering tumor proliferation, and transport of nephritic by-products. This article deals with the discussion of the major aspects of ZAG from its gene structure to function and metabolism.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Profound loss of adipose tissue is a hallmark of cancer cachexia. Zinc-α2-glycoprotein (ZAG), a recently identified adipokine, is suggested as a candidate in lipid catabolism. In the first study, eight weight-stable and 17 cachectic cancer patients (weight loss 5% in previous 6 months) were recruited. Zinc-α2-glycoprotein mRNA and protein expression were assessed in subcutaneous adipose tissue (SAT), subcutaneous adipose tissue morphology was examined and serum ZAG concentrations were quantified. In the second cohort, ZAG release by SAT was determined in 18 weight-stable and 15 cachectic cancer patients. The effect of ZAG on lipolysis was evaluated in vitro. Subcutaneous adipose tissue remodelling in cancer cachexia was evident through shrunken adipocytes with increased fibrosis. In cachectic cancer patients, ZAG mRNA was upregulated (2.7-fold, P=0.028) while leptin mRNA decreased (2.2-fold, P=0.018); serum ZAG levels were found to be unaffected. Zinc-α2-glycoprotein mRNA correlated positively with weight loss (r=0.51, P=0.01) and serum glycerol levels (r=0.57, P=0.003). Zinc-α2-glycoprotein release by SAT was also elevated in cachectic patients (1.5-fold, P=0.024) and correlated with weight loss (r=0.50, P=0.003). Recombinant ZAG stimulated lipolysis in human adipocytes. Zinc-α2-glycoprotein expression and secretion by adipose tissue is enhanced in cachectic cancer patients. Given its lipid-mobilising effect, ZAG may contribute to adipose atrophy associated with cancer cachexia in human beings.
    British Journal of Cancer 02/2011; 104(3):441-7. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zinc-alpha2-glycoprotein (AZGP1) is a secreted protein which is synthesized in a variety of cell types. AZGP1 has functionally been implicated in lipid metabolism, the regulation of cell cycling and cancer progression. Previous studies have shown increased circulating AZGP1 levels in patients with chronic kidney disease but AZGP1 has not been investigated in acute kidney injury (AKI). In this study, serum AZGP1 levels were measured in acute and chronic kidney disease to test for a correlation to renal function and other clinical parameters. We performed ELISA based measurements of AZGP1 serum levels in 21 patients suffering from grade 3 AKI and in 20 chronic hemodialysis patients. In AKI patients, AZGP1 was first measured before initiation of acute renal replacement therapy and a second measurement was done during renal functional recovery. Sera of healthy blood donors served as controls. The association of AZGP1 with acute and chronic renal dysfunction was analysed, as well as the correlation with clinical parameters, body composition and biochemical variables. Levels of circulating AZGP1 were significantly elevated in AKI patients. High initial levels of AZGP1 correlated with extra-renal complications but not with parameters of renal function. At follow-up, AZGP1 levels were still increased but now correlated significantly with creatinine, eGFR and urea. Circulating AZGP1 in chronic hemodialysis patients was higher than in AKI patients. An association to parameters of lipid metabolism was not found. This study illustrates that circulating AZGP1 is not only elevated in chronic hemodialysis patients but also sharply increases during the early phase of AKI. The unexpected association with extra-renal complications during AKI needs further exploration as it might point to unknown biological effects of AZGP1.
    BMC Nephrology 07/2013; 14(1):145. · 1.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The majority of patients diagnosed with neuroblastoma present with aggressive disease. Improved detection of neuroblastoma cancer cells following initial therapy may help in stratifying patient outcome and monitoring for relapse. To identify potential plasma biomarkers, we utilised a liquid chromatography-tandem mass spectrometry-based proteomics approach to detect differentially-expressed proteins in serum from TH-MYCN mice. TH-MYCN mice carry multiple copies of the human MYCN oncogene in the germline and homozygous mice for the transgene develop neuroblastoma in a manner resembling the human disease. The abundance of plasma proteins was measured over the course of disease initiation and progression. A list of 86 candidate plasma biomarkers was generated. Pathway analysis identified significant association of these proteins with genes involved in the complement system. One candidate, complement C3 protein, was significantly enriched in the plasma of TH-MYCN(+/+) mice at both 4 and 6weeks of age, and was found to be elevated in a cohort of human neuroblastoma plasma samples, compared to healthy subjects. In conclusion, we have demonstrated the suitability of the TH-MYCN(+/+) mouse model of neuroblastoma for identification of novel disease biomarkers in humans, and have identified Complement C3 as a candidate plasma biomarker for measuring disease state in neuroblastoma patients. This study has utilised a unique murine model which develops neuroblastoma tumours that are biologically indistinguishable from human neuroblastoma. This animal model has effectively allowed the identification of plasma proteins which may serve as potential biomarkers of neuroblastoma. Furthermore, the label-free ion count quantitation technique which was used displays significant benefits as it is less labour intensive, feasible and accurate. We have been able to successfully validate this approach by confirming the differential abundance of two different plasma proteins. In addition, we have been able to confirm the candidate biomarker Complement C3, is more abundant in the plasma of human neuroblastoma patient plasma samples when compared to healthy counterparts. Overall we have demonstrated that this approach can be potentially useful in the identification of biomarker candidates, and that further validation of the candidates may lead to the discovery of novel, clinically useful diagnostic tools in detection of sub-clinical neuroblastoma.
    Journal of proteomics 11/2013; · 5.07 Impact Factor