Zinc 2-Glycoprotein: A Multidisciplinary Protein

Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
Molecular Cancer Research (Impact Factor: 4.5). 07/2008; 6(6):892-906. DOI: 10.1158/1541-7786.MCR-07-2195
Source: PubMed

ABSTRACT Zinc alpha 2-glycoprotein (ZAG) is a protein of interest because of its ability to play many important functions in the human body, including fertilization and lipid mobilization. After the discovery of this molecule, during the last 5 decades, various studies have been documented on its structure and functions, but still, it is considered as a protein with an unknown function. Its expression is regulated by glucocorticoids. Due to its high sequence homology with lipid-mobilizing factor and high expression in cancer cachexia, it is considered as a novel adipokine. On the other hand, structural organization and fold is similar to MHC class I antigen-presenting molecule; hence, ZAG may have a role in the expression of the immune response. The function of ZAG under physiologic and cancerous conditions remains mysterious but is considered as a tumor biomarker for various carcinomas. There are several unrelated functions that are attributed to ZAG, such as RNase activity, regulation of melanin production, hindering tumor proliferation, and transport of nephritic by-products. This article deals with the discussion of the major aspects of ZAG from its gene structure to function and metabolism.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The source and composition of seminal plasma has previously been shown to alter the ability of spermatozoa to survive cryopreservation. In the present study, the ionic and proteomic composition of seminal plasma from rams with high (HSP; n=3) or low (LSP; n=3) freezing resilient spermatozoa was assessed. 75 proteins were identified to be more abundant in HSP and 48 proteins were identified to be more abundant in LSP. Individual seminal plasma proteomes were established for each of the six rams examined. For each ram, correlations were conducted between previously recorded freezing resilience [1] and individual spectral counts in order to identify markers of freezing resilience. 26S proteasome complex, acylamino acid releasing enzyme, alpha mannosidase class 2C, heat shock protein 90, tripeptidyl-peptidase 2, TCP-1 complex, sorbitol dehydrogenase and transitional endoplasmic reticulum ATPase were found to be positively correlated (r(2)>0.7) with freezing resilience. Cystatin, zinc-2-alpha glycoprotein, angiogenin-2-like protein, cartilage acidic protein-1, cathepsin B and ribonuclease 4 isoform 1 were found to be negatively correlated (r(2)>0.7) with freezing resilience. Several negative markers were found to originate from the accessory sex glands, whereas many positive markers originated from spermatozoa and were part of or associated with the 26S proteasome or CCT complex. Extensive analysis of seminal plasma from rams with varied sperm cryoresilience reveals significantly different protein compositions. Several proteins were shown to correlate with positive or negative cryopreservation ability demonstrating their usefulness as biomarkers within seminal plasma for freezing success. Copyright © 2015. Published by Elsevier B.V.
    Journal of proteomics 05/2015; DOI:10.1016/j.jprot.2015.05.017 · 3.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neisseria meningitidis is a Gram-negative aerobic diplococcus, responsible for a variety of meningococcal diseases. The genome of N. meningitidis MC58 is comprised of 2114 genes that are translated into 1953 proteins. The 698 genes (*35%) encode hypothetical proteins (HPs), because no experimental evidence of their biological functions are available. Analyses of these proteins are important to understand their functions in the metabolic networks and may lead to the discovery of novel drug targets against the infections caused by N. meningitidis. This study aimed at the identification and categorization of each HP present in the genome of N. meningitidis MC58 using computational tools. Functions of 363 proteins were predicted with high accuracy among the annotated set of HPs investigated. The reliably predicted 363 HPs were further grouped into 41 different classes of proteins, based on their possible roles in cellular processes such as metabolism, transport, and replication. Our studies revealed that 22 HPs may be involved in the pathogenesis caused by this microorganism. The top two HPs with highest virulence scores were subjected to molecular dynamics (MD) simulations to better understand their conformational behavior in a water environment. We also compared the MD simulation results with other virulent proteins present in N. meningitidis. This study broadens our understanding of the mechanistic pathways of pathogenesis, drug resistance, tolerance, and adaptability for host immune responses to N. meningitidis.
    Omics A Journal of Integrative Biology 05/2015; DOI:10.1089/omi.2015.0032 · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study of the koala transcriptome has the potential to advance our understanding of its immunome-immunological reaction of a given host to foreign antigens-and to help combat infectious diseases (e.g., chlamydiosis) that impede ongoing conservation efforts. We used Illumina sequencing of cDNA to characterize genes expressed in two different koala tissues of immunological importance, blood and spleen. We generated nearly 600 million raw sequence reads, and about 285 million of these were subsequently assembled and condensed into ~70,000 subcomponents that represent putative transcripts. We annotated ~16 % of these subcomponents and identified those related to infection and the immune response, including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), major histocompatibility complex (MHC) genes, and koala retrovirus (KoRV). Using phylogenetic analyses, we identified 29 koala genes in these target categories and report their concordance with currently accepted gene groups. By mapping multiple sequencing reads to transcripts, we identified 56 putative SNPs in genes of interest. The distribution of these SNPs indicates that MHC genes (34 SNPs) are more diverse than KoRV (12 SNPs), TLRs (8 SNPs), or RLRs (2 SNPs). Our sequence data also indicate that KoRV sequences are highly expressed in the transcriptome. Our efforts have produced full-length sequences for potentially important immune genes in koala, which should serve as targets for future investigations that aim to conserve koala populations.
    Immunogenetics 03/2015; 67(5-6). DOI:10.1007/s00251-015-0833-6 · 2.49 Impact Factor